s20ad Method
関数リスト一覧   NagLibrary Namespaceへ  ライブラリイントロダクション  本ヘルプドキュメントのchm形式版

s20ad returns a value for the Fresnel Integral Cx.

Syntax

C#
public static double s20ad(
	double x
)
Visual Basic (Declaration)
Public Shared Function s20ad ( _
	x As Double _
) As Double
Visual C++
public:
static double s20ad(
	double x
)
F#
static member s20ad : 
        x:float -> float 

Parameters

x
Type: System..::.Double
On entry: the argument x of the function.

Return Value

s20ad returns a value for the Fresnel Integral Cx.

Description

s20ad evaluates an approximation to the Fresnel Integral
Cx=0xcosπ2t2dt.
Note:  Cx=-C-x, so the approximation need only consider x0.0.
The method is based on three Chebyshev expansions:
For 0<x3,
Cx=x'r=0arTrt,   with ​ t=2 x3 4-1.
For x>3,
Cx=12+fxxsinπ2x2-gxx3cosπ2x2 ,
where fx='r=0brTrt,
and gx='r=0crTrt,
with t=2 3x 4-1.
For small x, Cxx. This approximation is used when x is sufficiently small for the result to be correct to machine precision.
For large x, fx 1π  and gx 1π2 . Therefore for moderately large x, when 1π2x3  is negligible compared with 12 , the second term in the approximation for x>3 may be dropped. For very large x, when 1πx  becomes negligible, Cx 12 . However there will be considerable difficulties in calculating sin π2x2 accurately before this final limiting value can be used. Since sin π2x2 is periodic, its value is essentially determined by the fractional part of x2. If x2=N+θ, where N is an integer and 0θ<1, then sin π2x2 depends on θ and on N modulo 4. By exploiting this fact, it is possible to retain some significance in the calculation of sin π2x2 either all the way to the very large x limit, or at least until the integer part of x2  is equal to the maximum integer allowed on the machine.

References

Error Indicators and Warnings

Accuracy

Let δ and ε be the relative errors in the argument and result respectively.
However, if δ is of the same order as the machine precision, then rounding errors could make ε slightly larger than the above relation predicts.
For small x, εδ and there is no amplification of relative error.
For moderately large values of x,
ε 2x cos π2 x2 δ
and the result will be subject to increasingly large amplification of errors. However the above relation breaks down for large values of x (i.e., when 1x2  is of the order of the machine precision); in this region the relative error in the result is essentially bounded by 2πx .
Hence the effects of error amplification are limited and at worst the relative error loss should not exceed half the possible number of significant figures.

Further Comments

Example

See Also