D01 Class
関数リスト一覧   NagLibrary Namespaceへ  ライブラリイントロダクション  本ヘルプドキュメントのchm形式版

This chapter provides methods for the numerical evaluation of definite integrals in one or more dimensions and for evaluating weights and abscissae of integration rules.

Syntax

C#
public static class D01
Visual Basic (Declaration)
Public NotInheritable Class D01
Visual C++
public ref class D01 abstract sealed
F#
[<AbstractClassAttribute>]
[<SealedAttribute>]
type D01 =  class end

Background to the Problems

One-dimensional Integrals

The choice of basic rules constitutes one of the principles on which methods for one-dimensional integrals may be classified. The other major basis of classification is the implementation strategy, of which some types are now presented.
(a) Single rule evaluation procedures
A fixed number of abscissae, N, is used. This number and the particular rule chosen uniquely determine the weights and abscissae. No estimate is made of the accuracy of the result.
(b) Automatic procedures
The number of abscissae, N, within a,b is gradually increased until consistency is achieved to within a level of accuracy (absolute or relative) requested by you. There are essentially two ways of doing this; hybrid forms of these two methods are also possible:
(i) whole interval procedures (non-adaptive)
A series of rules using increasing values of N are successively applied over the whole interval a,b. It is clearly more economical if abscissae already used for a lower value of N can be used again as part of a higher-order formula. This principle is known as optimal extension. There is no overlap between the abscissae used in Gaussian formulae of different orders. However, the Kronrod formulae are designed to give an optimal 2N+1-point formula by adding N+1 points to an N-point Gauss formula. Further extensions have been developed by Patterson.
(ii) adaptive procedures
The interval a,b is repeatedly divided into a number of sub-intervals, and integration rules are applied separately to each sub-interval. Typically, the subdivision process will be carried further in the neighbourhood of a sharp peak in the integrand than where the curve is smooth. Thus, the distribution of abscissae is adapted to the shape of the integrand.
Subdivision raises the problem of what constitutes an acceptable accuracy in each sub-interval. The usual global acceptability criterion demands that the sum of the absolute values of the error estimates in the sub-intervals should meet the conditions required of the error over the whole interval. Automatic extrapolation over several levels of subdivision may eliminate the effects of some types of singularities.

Multi-dimensional Integrals

A distinction must be made between cases of moderately low dimensionality (say, up to 4 or 5 dimensions), and those of higher dimensionality. Where the number of dimensions is limited, a one-dimensional method may be applied to each dimension, according to some suitable strategy, and high accuracy may be obtainable (using product rules). However, the number of integrand evaluations rises very rapidly with the number of dimensions, so that the accuracy obtainable with an acceptable amount of computational labour is limited; for example a product of 3-point rules in 20 dimensions would require more than 109 integrand evaluations. Special techniques such as the Monte–Carlo methods can be used to deal with high dimensions.
(a) Products of one-dimensional rules
A different one-dimensional rule may be used for each dimension, as appropriate to the range and any weight function present, and a different strategy may be used, as appropriate to the integrand behaviour as a function of each independent variable.
(b) Monte–Carlo methods
These are based on estimating the mean value of the integrand sampled at points chosen from an appropriate statistical distribution function. Usually a variance reducing procedure is incorporated to combat the fundamentally slow rate of convergence of the rudimentary form of the technique. These methods can be effective by comparison with alternative methods when the integrand contains singularities or is erratic in some way, but they are of quite limited accuracy.
(c) Number theoretic methods
These are based on the work of Korobov and Conroy and operate by exploiting implicitly the properties of the Fourier expansion of the integrand. Special rules, constructed from so-called optimal coefficients, give a particularly uniform distribution of the points throughout n-dimensional space and from their number theoretic properties minimize the error on a prescribed class of integrals. The method can be combined with the Monte–Carlo procedure.
(d) Sag–Szekeres method
By transformation this method seeks to induce properties into the integrand which make it accurately integrable by the trapezoidal rule. The transformation also allows effective control over the number of integrand evaluations.
(e) Automatic adaptive procedures
An automatic adaptive strategy in several dimensions normally involves division of the region into subregions, concentrating the divisions in those parts of the region where the integrand is worst behaved. It is difficult to arrange with any generality for variable limits in the inner integral(s). For this reason, some methods use a region where all the limits are constants; this is called a hyper-rectangle. Integrals over regions defined by variable or infinite limits may be handled by transformation to a hyper-rectangle. Integrals over regions so irregular that such a transformation is not feasible may be handled by surrounding the region by an appropriate hyper-rectangle and defining the integrand to be zero outside the desired region. Such a technique should always be followed by a Monte–Carlo method for integration.
The method used locally in each subregion produced by the adaptive subdivision process is usually one of three types: Monte–Carlo, number theoretic or deterministic. Deterministic methods are usually the most rapidly convergent but are often expensive to use for high dimensionality and not as robust as the other techniques.

References

Inheritance Hierarchy

See Also