d01aq Method
関数リスト一覧   NagLibrary Namespaceへ  ライブラリイントロダクション  本ヘルプドキュメントのchm形式版

d01aq calculates an approximation to the Hilbert transform of a function gx over a,b:
I=abgx x-c dx
for user-specified values of a, b and c.

Syntax

C#
public static void d01aq(
	D01..::.D01AQ_G g,
	double a,
	double b,
	double c,
	double epsabs,
	double epsrel,
	out double result,
	out double abserr,
	double[] w,
	out int subintvls,
	out int ifail
)
Visual Basic (Declaration)
Public Shared Sub d01aq ( _
	g As D01..::.D01AQ_G, _
	a As Double, _
	b As Double, _
	c As Double, _
	epsabs As Double, _
	epsrel As Double, _
	<OutAttribute> ByRef result As Double, _
	<OutAttribute> ByRef abserr As Double, _
	w As Double(), _
	<OutAttribute> ByRef subintvls As Integer, _
	<OutAttribute> ByRef ifail As Integer _
)
Visual C++
public:
static void d01aq(
	D01..::.D01AQ_G^ g, 
	double a, 
	double b, 
	double c, 
	double epsabs, 
	double epsrel, 
	[OutAttribute] double% result, 
	[OutAttribute] double% abserr, 
	array<double>^ w, 
	[OutAttribute] int% subintvls, 
	[OutAttribute] int% ifail
)
F#
static member d01aq : 
        g:D01..::.D01AQ_G * 
        a:float * 
        b:float * 
        c:float * 
        epsabs:float * 
        epsrel:float * 
        result:float byref * 
        abserr:float byref * 
        w:float[] * 
        subintvls:int byref * 
        ifail:int byref -> unit 

Parameters

g
Type: NagLibrary..::.D01..::.D01AQ_G
g must return the value of the function g at a given point x.

A delegate of type D01AQ_G.

a
Type: System..::.Double
On entry: a, the lower limit of integration.
b
Type: System..::.Double
On entry: b, the upper limit of integration. It is not necessary that a<b.
c
Type: System..::.Double
On entry: the parameter c in the weight function.
Constraint: c must not equal a or b.
epsabs
Type: System..::.Double
On entry: the absolute accuracy required. If epsabs is negative, the absolute value is used. See [Accuracy].
epsrel
Type: System..::.Double
On entry: the relative accuracy required. If epsrel is negative, the absolute value is used. See [Accuracy].
result
Type: System..::.Double %
On exit: the approximation to the integral I.
abserr
Type: System..::.Double %
On exit: an estimate of the modulus of the absolute error, which should be an upper bound for I-result.
w
Type: array< System..::.Double >[]()[]
An array of size [lw]
Note: lw must satisfy the constraint: lw4
On exit: details of the computation, as described in [Further Comments].
subintvls
Type: System..::.Int32 %
On exit: subintvls contains the actual number of sub-intervals used.
ifail
Type: System..::.Int32 %
On exit: ifail=0 unless the method detects an error (see [Error Indicators and Warnings]).

Description

d01aq is based on the QUADPACK routine QAWC (see Piessens et al. (1983)) and integrates a function of the form gxwx, where the weight function
wx=1x-c
is that of the Hilbert transform. (If a<c<b the integral has to be interpreted in the sense of a Cauchy principal value.) It is an adaptive method which employs a ‘global’ acceptance criterion (as defined by Malcolm and Simpson (1976)). Special care is taken to ensure that c is never the end point of a sub-interval (see Piessens et al. (1976)). On each sub-interval c1,c2 modified Clenshaw–Curtis integration of orders 12 and 24 is performed if c1-dcc2+d where d=c2-c1/20. Otherwise the Gauss
7-point and Kronrod 15-point rules are used. The local error estimation is described by
Piessens et al. (1983).

References

Error Indicators and Warnings

Accuracy

d01aq cannot guarantee, but in practice usually achieves, the following accuracy:
I-resulttol,
where
tol=maxepsabs,epsrel×I ,
and epsabs and epsrel are user-specified absolute and relative error tolerances. Moreover, it returns the quantity abserr which, in normal circumstances satisfies:
I-resultabserrtol.

Further Comments

The time taken by d01aq depends on the integrand and the accuracy required.
If ifail0 on exit, then you may wish to examine the contents of the array w, which contains the end points of the sub-intervals used by d01aq along with the integral contributions and error estimates over these sub-intervals.
Specifically, for i=1,2,,n, let ri denote the approximation to the value of the integral over the sub-interval [ai,bi] in the partition of a,b and ei be the corresponding absolute error estimate. Then, aibigxwxdxri and result=i=1nri. The value of n is returned in iw[0], and the values ai, bi, ei and ri are stored consecutively in the array w, that is:
  • ai=w[i-1],
  • bi=w[n+i-1],
  • ei=w[2n+i-1] and
  • ri=w[3n+i-1].

Example

See Also