d01ap Method
関数リスト一覧   NagLibrary Namespaceへ  ライブラリイントロダクション  本ヘルプドキュメントのchm形式版

d01ap is an adaptive integrator which calculates an approximation to the integral of a function gxwx over a finite interval a,b:
I= ab gx wx dx
where the weight function w has end point singularities of algebraico-logarithmic type.

Syntax

C#
public static void d01ap(
	D01..::.D01AP_G g,
	double a,
	double b,
	double alfa,
	double beta,
	int key,
	double epsabs,
	double epsrel,
	out double result,
	out double abserr,
	double[] w,
	out int subintvls,
	out int ifail
)
Visual Basic (Declaration)
Public Shared Sub d01ap ( _
	g As D01..::.D01AP_G, _
	a As Double, _
	b As Double, _
	alfa As Double, _
	beta As Double, _
	key As Integer, _
	epsabs As Double, _
	epsrel As Double, _
	<OutAttribute> ByRef result As Double, _
	<OutAttribute> ByRef abserr As Double, _
	w As Double(), _
	<OutAttribute> ByRef subintvls As Integer, _
	<OutAttribute> ByRef ifail As Integer _
)
Visual C++
public:
static void d01ap(
	D01..::.D01AP_G^ g, 
	double a, 
	double b, 
	double alfa, 
	double beta, 
	int key, 
	double epsabs, 
	double epsrel, 
	[OutAttribute] double% result, 
	[OutAttribute] double% abserr, 
	array<double>^ w, 
	[OutAttribute] int% subintvls, 
	[OutAttribute] int% ifail
)
F#
static member d01ap : 
        g:D01..::.D01AP_G * 
        a:float * 
        b:float * 
        alfa:float * 
        beta:float * 
        key:int * 
        epsabs:float * 
        epsrel:float * 
        result:float byref * 
        abserr:float byref * 
        w:float[] * 
        subintvls:int byref * 
        ifail:int byref -> unit 

Parameters

g
Type: NagLibrary..::.D01..::.D01AP_G
g must return the value of the function g at a given point x.

A delegate of type D01AP_G.

a
Type: System..::.Double
On entry: a, the lower limit of integration.
b
Type: System..::.Double
On entry: b, the upper limit of integration.
Constraint: b>a.
alfa
Type: System..::.Double
On entry: the parameter α in the weight function.
Constraint: alfa>-1.
beta
Type: System..::.Double
On entry: the parameter β in the weight function.
Constraint: beta>-1.
key
Type: System..::.Int32
On entry: indicates which weight function is to be used.
key=1
wx=x-aαb-x β.
key=2
wx= x-a α b-x βlnx-a.
key=3
wx= x-a α b-x βlnb-x.
key=4
wx= x-a α b-x βlnx-alnb-x.
Constraint: key=1, 2, 3 or 4.
epsabs
Type: System..::.Double
On entry: the absolute accuracy required. If epsabs is negative, the absolute value is used. See [Accuracy].
epsrel
Type: System..::.Double
On entry: the relative accuracy required. If epsrel is negative, the absolute value is used. See [Accuracy].
result
Type: System..::.Double %
On exit: the approximation to the integral I.
abserr
Type: System..::.Double %
On exit: an estimate of the modulus of the absolute error, which should be an upper bound for I-result.
w
Type: array< System..::.Double >[]()[]
An array of size [lw]
Note: lw must satisfy the constraint: lw8
On exit: details of the computation, as described in [Further Comments].
subintvls
Type: System..::.Int32 %
On exit: subintvls contains the actual number of sub-intervals used.
ifail
Type: System..::.Int32 %
On exit: ifail=0 unless the method detects an error (see [Error Indicators and Warnings]).

Description

d01ap is based on the QUADPACK routine QAWSE (see Piessens et al. (1983)) and integrates a function of the form gxwx, where the weight function wx may have algebraico-logarithmic singularities at the end points a and/or b. The strategy is a modification of that in d01ak. We start by bisecting the original interval and applying modified Clenshaw–Curtis integration of orders 12 and 24 to both halves. Clenshaw–Curtis integration is then used on all sub-intervals which have a or b as one of their end points (see Piessens et al. (1974)). On the other sub-intervals Gauss–Kronrod (715 point) integration is carried out.
A ‘global’ acceptance criterion (as defined by Malcolm and Simpson (1976)) is used. The local error estimation control is described in Piessens et al. (1983).

References

Error Indicators and Warnings

Accuracy

d01ap cannot guarantee, but in practice usually achieves, the following accuracy:
I-resulttol,
where
tol=maxepsabs,epsrel×I ,
and epsabs and epsrel are user-specified absolute and relative error tolerances. Moreover, it returns the quantity abserr which, in normal circumstances, satisfies
I-resultabserrtol.

Further Comments

The time taken by d01ap depends on the integrand and the accuracy required.
If ifail0 on exit, then you may wish to examine the contents of the array w, which contains the end points of the sub-intervals used by d01ap along with the integral contributions and error estimates over these sub-intervals.
Specifically, for i=1,2,,n, let ri denote the approximation to the value of the integral over the sub-interval ai,bi  in the partition of a,b  and ei  be the corresponding absolute error estimate. Then, ai bi fx wx dx ri  and result = i=1 n ri . The value of n is returned in iw[0], and the values ai, bi, ei and ri are stored consecutively in the array w, that is:
  • ai=w[i-1],
  • bi=w[n+i-1],
  • ei=w[2n+i-1] and
  • ri=w[3n+i-1].

Example

See Also