NAG DMC nagdmc_kmeans

Cluster Analysis: nagdmc_kmeans

Purpose

nagdmc_kmeans computes a k-means cluster analysis.

Declaration

Parameters

1: rec1 - long Input

On entry: the index in the data of the first data record used in the analysis.

Constraint: $rec1 \ge 0$.

2: nvar – long Input

On entry: the number of variables in the data.

Constraint: $\mathbf{nvar} \geq 1$.

3: nrec - long Input

On entry: the number of consecutive records, beginning at rec1, used in the analysis.

Constraint: $\mathbf{nrec} > 1$.

4: $\mathbf{dblk} - \mathbf{long}$

On entry: the total number of records in the data block.

Constraint: $dblk \ge rec1 + nrec$.

 $5: \quad data[dblk * nvar] - double$

Input

On entry: the data values for the jth variable (for $j = 0, 1, ..., \mathbf{nvar} - 1$) are stored in $\mathbf{data}[i*\mathbf{nvar} + j]$, for $i = 0, 1, ..., \mathbf{dblk} - 1$.

6: nxvar - long Input

On entry: the number of variables in the analysis. If $\mathbf{nxvar} = 0$, all variables in the data, excluding \mathbf{iwts} (if $\mathbf{iwts} \ge 0$), are used in the analysis.

Constraint: $0 \le \mathbf{nxvar} \le \mathbf{nvar}$.

7: xvar[nxvar] - long

Input

On entry: the indices indicating the position in **data** in which the variables are stored. If $\mathbf{nxvar} = 0$ then \mathbf{xvar} must be 0, and the indices of variables are given by $j = 0, 1, \dots, \mathbf{nvar} - 1$.

Constraints: if $\mathbf{nxvar} > 0$, $0 \le \mathbf{xvar}[i] < \mathbf{nvar}$, for $i = 0, 1, \dots, \mathbf{nxvar} - 1$; otherwise \mathbf{xvar} must be 0.

8: iwts - long Input

On entry: the index in data in which the weights are stored. If iwts = -1, no weights are used. Constraints: $-1 \le iwts < nvar$; if nxvar > 0, $iwts \ne xvar[i]$, for i = 0, 1, ..., nxvar - 1.

9: k - long Input

On entry: the number of clusters to be formed.

Constraint: $1 < \mathbf{k} < \mathbf{nrec}$.

10: ic[nrec] - long

Input/Output

On entry: the initial allocation of the **nrec** data records to clusters.

On exit: the final allocation of data records to clusters.

Constraints: $0 \le ic[i] < k$, for i = 0, 1, ..., nrec - 1.

NAG DMC nagdmc_kmeans

11: $\mathbf{c}[\mathbf{k}*\mathbf{nvar}] - \text{double}$

Output

On exit: the element $\mathbf{c}[i * \mathbf{nvar} + j]$ contains the mean of the jth variable for the ith cluster, for $i = 0, 1, ..., \mathbf{k} - 1$; for $j = 0, 1, ..., \mathbf{nvar} - 1$.

12: maxit - long

Input

On entry: the maximum number of iterations used to compute the cluster analysis.

Constraint: $\mathbf{maxit} > 0$.

13: **info** - int *

Output

On exit: info gives information on the success of the function call:

0: the function successfully completed its task.

-1: the computations have not converged in **maxit** iterations.

 $i; i = 1, 2, 3, 4, 6, 7, \dots, 10, 12$: the specification of the *i*th formal parameter was incorrect.

51: a weight is negative.

52: a cluster has no members in the initial allocation.

99: the function failed to allocate enough memory.

> 100: an error occurred in a function specified by the user.

Notation

nrec the number of data records, n.

nxvar the number of variables, p.

xvar the variables that take the values in X.

iwts if iwts ≥ 0 , iwts is the index in the data that defines the weights, w_i , for i = 1, 2, ..., n.

 \mathbf{k} the number of clusters, k.

Description

Let X be a data matrix of n data records on p variables and let $x_{ij} \in X$ denote the ith value of on the jth variable, for j = 1, 2, ..., p; for i = 1, 2, ..., n.

k-means clustering allocates each data record to one of k groups or clusters to minimise the within-cluster sum of squares:

$$\sum_{l=1}^{k} \sum_{i \in S_l} \sum_{j=1}^{p} (x_{ij} - \bar{x}_{lj})^2,$$

where S_l is the set of data records in the lth cluster and \bar{x}_{lj} is the mean for the variable j over cluster l

In addition to the data matrix, a k by p matrix giving the initial cluster centres for the k clusters is required. The objects are then initially allocated to the cluster with the nearest cluster mean. Given the initial allocation, the procedure is to search iteratively for the k-partition with locally optimal within-cluster sum of squares by moving points from one cluster to another.

Optionally, weights for each object, w_i , can be used so that the clustering is based on within-cluster weighted sums of squares:

$$\sum_{l=1}^{k} \sum_{i \in S_l} \sum_{j=1}^{p} w_i (x_{ij} - \tilde{x}_{lj})^2,$$

where \tilde{x}_{lj} is the weighted mean for variable j over cluster l.

The algorithm used is based on the algorithm of Hartigan and Wong [3].

References and Further Reading

Everitt B S (1974) Cluster Analysis Heinemann.

Krzanowski W J (1990) Principles of Multivariate Analysis Oxford University Press.

Hartigan J A and Wong M A (1979) Algorithm AS136: A k-means clustering algorithm Applied Statistics 28 100–108.

NAG DMC nagdmc_kmeans

See Also

nagdmc_nrgpallocates data records to the nearest cluster.nagdmc_rintscan be used to form intial cluster centres at random.nagdmc_wcsscomputes the within-cluster sum of squares following a clustering.kmeans_ex.cthe example calling program.