Bibliography

数値解の品質トップへ

Bibliography

  1. F. S. Acton. Numerical Methods that Usually Work. Harper and Row, New York, USA, 1970.

  2. F. S. Acton. Real Computing Made Real: Preventing Errors in Scientific and Engineering Calculations.
    Princeton University Press, Princeton, NJ, USA, 1996. ISBN 0-691-03663-2.

  3. G. Alefeld and G. Mayer. Interval analysis: Theory and applications. J. Comput. Appl. Math., 121:
    421--464, 2000.

  4. E. Anderson, Z. Bai, C. H. Bischof, S. Blackford, J. Demmel, J. J. Dongarra, J. Du Croz, A. Green-
    baum, S. Hammarling, A. McKenney, and D. C. Sorensen. LAPACK Users' Guide. SIAM,
    Philadelphia, PA, USA, 3rd edition, 1999. ISBN 0-89871-447-8. (www.netlib.org/lapack/lug/).

  5. D. Bindel, J. Demmel, W. Kahan, and O. Marques. On computing Givens rotations reliably and
    efficiently. ACM Trans. Math. Software, 28:206--238, 2002.

  6. L. S. Blackford, A. Cleary, J. Demmel, I. Dhillon, J. J. Dongarra, S. Hammarling, A. Petitet, H. Ren,
    K. Stanley, and R. C. Whaley. Practical experience in the numerical dangers of heterogeneous
    computing. ACM Trans. Math. Software, 23:133--147, 1997.

  7. R. W. Brankin and I. Gladwell. Algorithm 771: rksuite 90: Fortran 90 software for ordinary
    differential equation initial-value problems. ACM Trans. Math. Software, 23:402--415, 1997.

  8. R. W. Brankin, I. Gladwell, and L. F. Shampine. RKSUITE: A suite of runge-kutta codes for the
    initial value problem for ODEs. Softreport 92-S1, Mathematics Department, Southern Methodist
    University, Dallas, TX 75275, USA, 1992.

  9. R.W. Brankin, I. Gladwell, and L. F. Shampine. RKSUITE: A suite of explicit runge-kutta codes. In
    R. P. Agarwal, editor, Contributions to Numerical Mathematics, pages 41--53. World Scientific,
    River Edge, NJ, USA, 1993. (WSSIAA, vol. 2).

  10. J. L. Britton, editor. Collected Works of A. M. Turing: Pure Mathematics. North-Holland, Amster-
    dam, The Netherlands, 1992. ISBN 0-444-88059-3.

  11. F. Chaitin-Chatelin and V. Frayssé. Lectures on Finite Precision Computations. SIAM, Philadelphia,
    PA, USA, 1996. ISBN 0-89871-358-7.

  12. T. F. Chan, G. H. Golub, and R. J. LeVeque. Algorithms for computing the sample variance: Analysis
    and recommendations. The American Statistician, 37:242--247, 1983.

  13. R. Cools and A. Haegemans. Algorithm 824: CUBPACK: A package for automatic cubature;
    framework description. ACM Trans. Math. Software, 29:287--296, 2003.

  14. M. G. Cox, M. P. Dainton, and P. M. Harris. Testing spreadsheets and other packages used in
    metrology: Testing functions for the calculation of standard deviation. NPL Report CMSC 07/00,
    Centre for Mathematics and Scientific Computing, National Physical Laboratory, Teddington,
    Middlesex TW11 0LW, UK, 2000.

  15. D. S. Dodson. Corrigendum: Remark on "Algorithm 539: Basic Linear Algebra Subroutines for
    FORTRAN usage". ACM Trans. Math. Software, 9:140, 1983.

  16. D. S. Dodson and R. G. Grimes. Remark on algorithm 539: Basic Linear Algebra Subprograms for
    Fortran usage. ACM Trans. Math. Software, 8:403--404, 1982.

  17. J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. An extended set of FORTRAN Basic
    Linear Algebra Subprograms. ACM Trans. Math. Software, 14:1--32, 399, 1988a. (Algorithm 656.
    See also Dongarra et al. [1988b]).

  18. J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. Corrigenda: "An extended set of
    FORTRAN Basic Linear Algebra Subprograms". ACM Trans. Math. Software, 14:399, 1988b.
    (See also Dongarra et al. [1988a]).

  19. J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling. A set of Level 3 Basic Linear Algebra
    Subprograms. ACM Trans. Math. Software, 16:1--28, 1990. (Algorithm 679).

  20. A. A. Dubrulle. A class of numerical methods for the computation of Pythagorean sums. IBM J. Res.
    Develop.
    , 27(6):582--589, November 1983.

  21. G. E. Forsythe. Pitfalls in computation, or why a math book isn't enough. Amer. Math. Monthly, 9:
    931--995, 1970.

  22. G. E. Forsythe. What is a satisfactory quadratic equation solver. In B. Dejon and P. Henrici, editors,
    Constructive Aspects of the Fundamental Theorem of Algebra
    , pages 53--61. Wiley, New York,
    NY, USA, 1969.

  23. L. Fox. How to get meaningless answers in scientific computation (and what to do about it). IMA
    Bulletin
    , 7:296--302, 1971.

  24. W. Givens. Numerical computation of the characteristic values of a real symmetric matrix. Technical
    Report ORNL-1574, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA, 1954.

  25. G. H. Golub. Numerical methods for solving linear least squares problems. Numer. Math., 7:
    206--216, 1965.

  26. G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins University Press,
    Baltimore, MD, USA, 3rd edition, 1996. ISBN 0-8018-5414-8.

  27. S. Hammarling. An introduction to the quality of computed solutions. In B. Einarsson, editor,
    Accuracy and Reliability in Scientific Computing
    , pages 43--76. SIAM, Philadelphia, PA, USA, 2005.
    (Accompanying web site for book: www.nsc.liu.se/wg25/book/).

  28. G. Hargreaves. Interval analysis in MATLAB. Master's thesis, Department of Mathematics, University
    of Manchester, Manchester M13 9PL, UK, 2002.

  29. D. J. Higham and N. J. Higham. MATLAB Guide. SIAM, Philadelphia, PA, USA, 2000. ISBN
    0-89871-469-9.

  30. D. J. Higham and N. J. Higham. MATLAB Guide. SIAM, Philadelphia, PA, USA, 2nd edition, 2005.
    ISBN 0-89871-578-4.

  31. N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia, PA, USA,
    second edition, 2002. ISBN 0-89871-521-0.

  32. N. J. Higham. Can you "count" on your computer? www.maths.man.ac.uk/higham/talks/, 1998.
    (Public lecture for Science Week 1998).

  33. IEEE. ANSI/IEEE Standard for Binary Floating Point Arithmetic: Std 754-1985. IEEE Press, New
    York, NY, USA, 1985.

  34. IEEE. ANSI/IEEE Standard for Radix Independent Floating Point Arithmetic: Std 854-1987. IEEE
    Press, New York, NY, USA, 1987.

  35. E. Isaacson and H. B. Keller. Analysis of Numerical Methods. Wiley, New York, NY, USA, 1966.
    (Reprinted with corrections and new Preface by Dover Publications, New York, 1994, ISBN 0-486
    68029-0).

  36. L. Knüsel. On the accuracy of statistical distributions in Microsoft Excel 97. Comput. Statist. Data
    Anal.
    , 26:375--377, 1998.

  37. V. Kreinovich. Interval computations. www.cs.utep.edu/interval-comp/.

  38. C. L. Lawson and R. J. Hanson. Solving Least Squares Problems. Prentice-Hall, Englewood Cliffs, NJ,
    USA, 1974. (Republished as Lawson and Hanson [1995]).

  39. C. L. Lawson and R. J. Hanson. Solving Least Squares Problems. Classics in Applied Mathematics,
    15. SIAM, Philadelphia, PA, USA, 1995. ISBN 0-89871-356-0. (Revised version of Lawson and
    Hanson [1974]).

  40. C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh. Basic Linear Algebra Subprograms for
    FORTRAN usage. ACM Trans. Math. Software, 5:308--323, 1979. (Algorithm 539. See also Dodson
    and Grimes [1982] and Dodson [1983]).

  41. R. S. Martin and J. H. Wilkinson. Similarity reduction of a general matrix to Hessenberg form.
    Numer. Math.
    , 12:349--368, 1968. (See also [Wilkinson and Reinsch, 1971, pp 339--358]).

  42. MathWorks. MATLAB. The Mathworks, Inc, www.mathworks.com.

  43. B. D.McCullough and B.Wilson. On the accuracy of statistical procedures inMicrosoft Excel 2000
    and Excel XP. Comput. Statist. Data Anal., 40:713--721, 2002.

  44. B. D. McCullough and B. Wilson. On the accuracy of statistical procedures in Microsoft Excel 97.
    Comput. Statist. Data Anal.
    , 31:27--37, 1999.

  45. M. Metcalf and J. K. Reid. Fortran 90/95 Explained. Oxford University Press, Oxford, UK, 1996.

  46. M. Metcalf, J. K. Reid, and M. Cohen. Fortran 95/2003 Explained. Oxford University Press,
    Oxford, UK, 2004. ISBN 0 19 852693 8.

  47. C. Moler and D. Morrison. Replacing square roots by Pythagorean sums. IBM J. Res. Develop., 27
    (6):577--581, November 1983.

  48. R. E. Moore. Methods and Applications of Interval Analysis. SIAM, Philadelphia, PA, USA, 1979.

  49. NAG. The NAG Fortran Library Manual, Mark 20. The Numerical Algorithms Group Ltd, Wilkinson
    House, Jordan Hill Road, Oxford OX2 8DR, UK., 2003.
    (www.nag.com/numeric/fl/manual/html/FLlibrarymanual.asp, or
    www.nag.com/numeric/fl/manual/html/FLlibrarymanual.asp).

  50. NAG. The NAG Library. NAG Ltd, www.nag.com/numeric/numerical libraries.asp, or
    www.nag.com/numeric/numerical libraries.asp.

  51. M. L. Overton. Numerical Computing with IEEE Floating Point Arithmetic. SIAM, Philadelphia, PA,
    USA, 2001. ISBN 0-89871-482-6.

  52. R. Piessens, E. de Doncker-Kapenga, C. W. Überhuber, and D. K. Kahaner. QUADPACK -- A
    Subroutine Package for Automatic Integration
    . Springer-Verlag, Berlin, Germany, 1983.

  53. D. M. Priest. Efficient scaling for complex division. ACM Trans. Math. Software, 30:389--401, 2004.

  54. S. M. Rump. INTLAB -- INTerval LABoratory. In T. Csendes, editor, Developments in Reliable
    Computing
    , pages 77--104. Kluwer Academic, Dordrecht, The Netherlands, 1999.

  55. L. F. Shampine and I. Gladwell. The next generation of rünge-kutta codes. In Cash J. R. and
    I. Gladwell, editors, Computational Ordinary Differential Equations, pages 145--164. Oxford
    University Press, Oxford, UK, 1992. (IMA Conference Series, New Series 39).

  56. R. L. Smith. Algorithm 116: Complex division. Communs Ass. comput. Mach., 5:435, 1962.

  57. G. W. Stewart. Matrix Algorithms: Basic Decompositions, volume I. SIAM, Philadelphia, PA,
    USA, 1998. ISBN 0-89871-414-1.

  58. G. W. Stewart. A note on complex division. ACM Trans. Math. Software, 11:238--241, 1985.

  59. G. W. Stewart and J. Sun. Matrix Perturbation Theory. Academic Press, London, UK, 1990.

  60. A. M. Turing. Rounding-off errors in matrix processes. Q. J. Mech. appl. Math., 1:287--308, 1948.
    (Reprinted in Britton [1992] with summary, notes and corrections).

  61. J. Vignes. A stochastic arithmetic for reliable scientific computation. Math. and Comp. in Sim., 35:
    233--261, 1993.

  62. J. H. Wilkinson. Rounding Errors in Algebraic Processes. Notes on Applied Science, No.32.
    HMSO, London, UK, 1963. (Also published by Prentice-Hall, Englewood Cliffs, NJ, USA, 1964,
    translated into Polish as Bledy Zaokragleń w Procesach Algebraicznych by PWW, Warsaw,
    Poland, 1967 and translated into German as Rundungsfehler by Springer-Verlag, Berlin, Germany,
    1969. Reprinted by Dover Publications, New York, 1994).

  63. J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press, Oxford, UK, 1965.
    (Also translated into Russian by Nauka, Russian Academy of Sciences, 1970).

  64. J. H.Wilkinson. The perfidious polynomial. In G. H. Golub, editor, Studies in Numerical Analysis,
    Volume 24
    , chapter 1, pages 1--28. The Mathematical Association of America, 1984. (Awarded the
    Chauvenet Prize of the Mathematical Association of America).

  65. J. H. Wilkinson. Error analysis revisited. IMA Bulletin, 22:192--200, 1986. (Invited lecture at
    Lancaster University in honour of C. W. Clenshaw, 1985).

  66. J. H. Wilkinson. Error analysis of direct methods of matrix inversion. J. ACM, 8:281--330, 1961.

  67. J. H. Wilkinson. The state of the art in error analysis. NAG Newsletter, 2/85:5--28, 1985. (Invited
    lecture for the NAG 1984 Annual General Meeting).

  68. J. H. Wilkinson. Error analysis of floating-point computation. Numer. Math., 2:319--340, 1960.

  69. J. H. Wilkinson and C. Reinsch, editors. Handbook for Automatic Computation, Vol.2, Linear
    Algebra
    . Springer-Verlag, Berlin, Germany, 1971.



関連情報
Privacy Policy  /  Trademarks