概要
本サンプルはFortran言語によりLAPACKルーチンZSPSVXを利用するサンプルプログラムです。
以下の式を解きます。は複素対称行列です。
及び
解のエラー推定値、行列の条件数の逆数の推定値も合わせて出力されます。
入力データ
(本ルーチンの詳細はZSPSVX のマニュアルページを参照)このデータをダウンロード |
ZSPSVX Example Program Data 4 2 :N and NRHS ( -0.56, 0.12) ( -1.54, -2.86) ( 5.32, -1.59) ( 3.80, 0.92) ( -2.83 ,-0.03) ( -3.52, 0.58) ( -7.86, -2.96) ( 8.86, 1.81) ( 5.14, -0.64) ( -0.39 ,-0.71) :End matrix A ( -6.43, 19.24) ( -4.59,-35.53) ( -0.49, -1.47) ( 6.95, 20.49) (-48.18, 66.00) (-12.08,-27.02) (-55.64, 41.22) (-19.09,-35.97) :End matrix B
出力結果
(本ルーチンの詳細はZSPSVX のマニュアルページを参照)この出力例をダウンロード |
ZSPSVX Example Program Results Solution(s) 1 2 1 (-4.0000, 3.0000) (-1.0000, 1.0000) 2 ( 3.0000,-2.0000) ( 3.0000, 2.0000) 3 (-2.0000, 5.0000) ( 1.0000,-3.0000) 4 ( 1.0000,-1.0000) (-2.0000,-1.0000) Backward errors (machine-dependent) 8.1E-17 3.0E-17 Estimated forward error bounds (machine-dependent) 1.2E-14 1.2E-14 Estimate of reciprocal condition number 4.9E-02
ソースコード
(本ルーチンの詳細はZSPSVX のマニュアルページを参照)※本サンプルソースコードのご利用手順は「サンプルのコンパイル及び実行方法」をご参照下さい。
このソースコードをダウンロード |
Program zspsvx_example ! ZSPSVX Example Program Text ! Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com ! .. Use Statements .. Use lapack_example_aux, Only: nagf_file_print_matrix_complex_gen_comp Use lapack_interfaces, Only: zspsvx Use lapack_precision, Only: dp ! .. Implicit None Statement .. Implicit None ! .. Parameters .. Integer, Parameter :: nin = 5, nout = 6 Character (1), Parameter :: uplo = 'U' ! .. Local Scalars .. Real (Kind=dp) :: rcond Integer :: i, ifail, info, j, ldb, ldx, n, nrhs ! .. Local Arrays .. Complex (Kind=dp), Allocatable :: afp(:), ap(:), b(:, :), work(:), & x(:, :) Real (Kind=dp), Allocatable :: berr(:), ferr(:), rwork(:) Integer, Allocatable :: ipiv(:) Character (1) :: clabs(1), rlabs(1) ! .. Executable Statements .. Write (nout, *) 'ZSPSVX Example Program Results' Write (nout, *) Flush (nout) ! Skip heading in data file Read (nin, *) Read (nin, *) n, nrhs ldb = n ldx = n Allocate (afp((n*(n+1))/2), ap((n*(n+1))/2), b(ldb,nrhs), work(2*n), x( & ldx,nrhs), berr(nrhs), ferr(nrhs), rwork(n), ipiv(n)) ! Read the upper or lower triangular part of the matrix A from ! data file If (uplo=='U') Then Read (nin, *)((ap(i+(j*(j-1))/2),j=i,n), i=1, n) Else If (uplo=='L') Then Read (nin, *)((ap(i+((2*n-j)*(j-1))/2),j=1,i), i=1, n) End If ! Read B from data file Read (nin, *)(b(i,1:nrhs), i=1, n) ! Solve the equations AX = B for X Call zspsvx('Not factored', uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, & ldx, rcond, ferr, berr, work, rwork, info) If ((info==0) .Or. (info==n+1)) Then ! Print solution, error bounds and condition number ! ifail: behaviour on error exit ! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft ifail = 0 Call nagf_file_print_matrix_complex_gen_comp('General', ' ', n, nrhs, & x, ldx, 'Bracketed', 'F7.4', 'Solution(s)', 'Integer', rlabs, & 'Integer', clabs, 80, 0, ifail) Write (nout, *) Write (nout, *) 'Backward errors (machine-dependent)' Write (nout, 100) berr(1:nrhs) Write (nout, *) Write (nout, *) 'Estimated forward error bounds (machine-dependent)' Write (nout, 100) ferr(1:nrhs) Write (nout, *) Write (nout, *) 'Estimate of reciprocal condition number' Write (nout, 100) rcond Write (nout, *) If (info==n+1) Then Write (nout, *) Write (nout, *) 'The matrix A is singular to working precision' End If Else Write (nout, 110) 'The diagonal block ', info, ' of D is zero' End If 100 Format ((3X,1P,7E11.1)) 110 Format (1X, A, I3, A) End Program