概要
本サンプルはFortran言語によりLAPACKルーチンZPTSVXを利用するサンプルプログラムです。
以下の式を解きます。はエルミート正定値三重対角行列です。
及び
解のエラー推定値、の条件数の逆数の推定値も合わせて出力されます。
入力データ
(本ルーチンの詳細はZPTSVX のマニュアルページを参照)このデータをダウンロード |
ZPTSVX Example Program Data 4 2 :Values of N and NRHS 16.0 41.0 46.0 21.0 :End of diagonal D ( 16.0, 16.0) ( 18.0, -9.0) ( 1.0, -4.0) :End of sub-diagonal E ( 64.0, 16.0) (-16.0,-32.0) ( 93.0, 62.0) ( 61.0,-66.0) ( 78.0,-80.0) ( 71.0,-74.0) ( 14.0,-27.0) ( 35.0, 15.0) :End of matrix B
出力結果
(本ルーチンの詳細はZPTSVX のマニュアルページを参照)この出力例をダウンロード |
ZPTSVX Example Program Results Solution(s) 1 2 1 ( 2.0000, 1.0000) (-3.0000,-2.0000) 2 ( 1.0000, 1.0000) ( 1.0000, 1.0000) 3 ( 1.0000,-2.0000) ( 1.0000,-2.0000) 4 ( 1.0000,-1.0000) ( 2.0000, 1.0000) Backward errors (machine-dependent) 0.0E+00 0.0E+00 Estimated forward error bounds (machine-dependent) 9.0E-12 6.1E-12 Estimate of reciprocal condition number 1.1E-04
ソースコード
(本ルーチンの詳細はZPTSVX のマニュアルページを参照)※本サンプルソースコードのご利用手順は「サンプルのコンパイル及び実行方法」をご参照下さい。
このソースコードをダウンロード |
Program zptsvx_example ! ZPTSVX Example Program Text ! Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com ! .. Use Statements .. Use lapack_example_aux, Only: nagf_file_print_matrix_complex_gen_comp Use lapack_interfaces, Only: zptsvx Use lapack_precision, Only: dp ! .. Implicit None Statement .. Implicit None ! .. Parameters .. Integer, Parameter :: nin = 5, nout = 6 ! .. Local Scalars .. Real (Kind=dp) :: rcond Integer :: i, ifail, info, ldb, ldx, n, nrhs ! .. Local Arrays .. Complex (Kind=dp), Allocatable :: b(:, :), e(:), ef(:), work(:), x(:, :) Real (Kind=dp), Allocatable :: berr(:), d(:), df(:), ferr(:), rwork(:) Character (1) :: clabs(1), rlabs(1) ! .. Executable Statements .. Write (nout, *) 'ZPTSVX Example Program Results' Write (nout, *) Flush (nout) ! Skip heading in data file Read (nin, *) Read (nin, *) n, nrhs ldb = n ldx = n Allocate (b(ldb,nrhs), e(n-1), ef(n-1), work(n), x(ldx,nrhs), & berr(nrhs), d(n), df(n), ferr(nrhs), rwork(n)) ! Read the lower bidiagonal part of the tridiagonal matrix A and ! the right hand side b from data file Read (nin, *) d(1:n) Read (nin, *) e(1:n-1) Read (nin, *)(b(i,1:nrhs), i=1, n) ! Solve the equations AX = B for X Call zptsvx('Not factored', n, nrhs, d, e, df, ef, b, ldb, x, ldx, & rcond, ferr, berr, work, rwork, info) If ((info==0) .Or. (info==n+1)) Then ! Print solution, error bounds and condition number ! ifail: behaviour on error exit ! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft ifail = 0 Call nagf_file_print_matrix_complex_gen_comp('General', ' ', n, nrhs, & x, ldx, 'Bracketed', 'F7.4', 'Solution(s)', 'Integer', rlabs, & 'Integer', clabs, 80, 0, ifail) Write (nout, *) Write (nout, *) 'Backward errors (machine-dependent)' Write (nout, 100) berr(1:nrhs) Write (nout, *) Write (nout, *) 'Estimated forward error bounds (machine-dependent)' Write (nout, 100) ferr(1:nrhs) Write (nout, *) Write (nout, *) 'Estimate of reciprocal condition number' Write (nout, 100) rcond If (info==n+1) Then Write (nout, *) Write (nout, *) 'The matrix A is singular to working precision' End If Else Write (nout, 110) 'The leading minor of order ', info, & ' is not positive definite' End If 100 Format (1X, 1P, 7E11.1) 110 Format (1X, A, I3, A) End Program