概要
本サンプルはFortran言語によりLAPACKルーチンZPPSVXを利用するサンプルプログラムです。
以下の式を解きます。はエルミート正定値行列です。
及び
解のエラー推定値、均衡化についての情報、スケーリングされた行列の条件数の逆数の推定値も合わせて出力されます。
入力データ
(本ルーチンの詳細はZPPSVX のマニュアルページを参照)このデータをダウンロード |
ZPPSVX Example Program Data 4 2 :Values of N and NRHS ( 3.23, 0.00) ( 1.51, -1.92) ( 1.90, 0.84) ( 0.42, 2.50) ( 3.58, 0.00) (-0.23, 1.11) (-1.18, 1.37) ( 4.09, 0.00) ( 2.33, -0.14) ( 4.29, 0.00) :End of matrix A ( 3.93, -6.14) ( 1.48, 6.58) ( 6.17, 9.42) ( 4.65, -4.75) (-7.17,-21.83) (-4.91, 2.29) ( 1.99,-14.38) ( 7.64,-10.79) :End of matrix B
出力結果
(本ルーチンの詳細はZPPSVX のマニュアルページを参照)この出力例をダウンロード |
ZPPSVX Example Program Results Solution(s) 1 2 1 ( 1.0000,-1.0000) (-1.0000, 2.0000) 2 (-0.0000, 3.0000) ( 3.0000,-4.0000) 3 (-4.0000,-5.0000) (-2.0000, 3.0000) 4 ( 2.0000, 1.0000) ( 4.0000,-5.0000) Backward errors (machine-dependent) 1.1E-16 7.9E-17 Estimated forward error bounds (machine-dependent) 6.1E-14 7.4E-14 Estimate of reciprocal condition number 6.6E-03 A has not been equilibrated
ソースコード
(本ルーチンの詳細はZPPSVX のマニュアルページを参照)※本サンプルソースコードのご利用手順は「サンプルのコンパイル及び実行方法」をご参照下さい。
このソースコードをダウンロード |
Program zppsvx_example ! ZPPSVX Example Program Text ! Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com ! .. Use Statements .. Use lapack_example_aux, Only: nagf_file_print_matrix_complex_gen_comp Use lapack_interfaces, Only: zppsvx Use lapack_precision, Only: dp ! .. Implicit None Statement .. Implicit None ! .. Parameters .. Integer, Parameter :: nin = 5, nout = 6 Character (1), Parameter :: uplo = 'U' ! .. Local Scalars .. Real (Kind=dp) :: rcond Integer :: i, ifail, info, j, ldb, ldx, n, nrhs Character (1) :: equed ! .. Local Arrays .. Complex (Kind=dp), Allocatable :: afp(:), ap(:), b(:, :), work(:), & x(:, :) Real (Kind=dp), Allocatable :: berr(:), ferr(:), rwork(:), s(:) Character (1) :: clabs(1), rlabs(1) ! .. Executable Statements .. Write (nout, *) 'ZPPSVX Example Program Results' Write (nout, *) Flush (nout) ! Skip heading in data file Read (nin, *) Read (nin, *) n, nrhs ldb = n ldx = n Allocate (afp((n*(n+1))/2), ap((n*(n+1))/2), b(ldb,nrhs), work(2*n), x( & ldx,nrhs), berr(nrhs), ferr(nrhs), rwork(n), s(n)) ! Read the upper or lower triangular part of the matrix A from ! data file If (uplo=='U') Then Read (nin, *)((ap(i+(j*(j-1))/2),j=i,n), i=1, n) Else If (uplo=='L') Then Read (nin, *)((ap(i+((2*n-j)*(j-1))/2),j=1,i), i=1, n) End If ! Read B from data file Read (nin, *)(b(i,1:nrhs), i=1, n) ! Solve the equations AX = B for X Call zppsvx('Equilibration', uplo, n, nrhs, ap, afp, equed, s, b, ldb, & x, ldx, rcond, ferr, berr, work, rwork, info) If ((info==0) .Or. (info==n+1)) Then ! Print solution, error bounds, condition number and the form ! of equilibration ! ifail: behaviour on error exit ! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft ifail = 0 Call nagf_file_print_matrix_complex_gen_comp('General', ' ', n, nrhs, & x, ldx, 'Bracketed', 'F7.4', 'Solution(s)', 'Integer', rlabs, & 'Integer', clabs, 80, 0, ifail) Write (nout, *) Write (nout, *) 'Backward errors (machine-dependent)' Write (nout, 100) berr(1:nrhs) Write (nout, *) Write (nout, *) 'Estimated forward error bounds (machine-dependent)' Write (nout, 100) ferr(1:nrhs) Write (nout, *) Write (nout, *) 'Estimate of reciprocal condition number' Write (nout, 100) rcond Write (nout, *) If (equed=='N') Then Write (nout, *) 'A has not been equilibrated' Else If (equed=='Y') Then Write (nout, *) & 'A has been row and column scaled as diag(S)*A*diag(S)' End If If (info==n+1) Then Write (nout, *) Write (nout, *) 'The matrix A is singular to working precision' End If Else Write (nout, 110) 'The leading minor of order ', info, & ' is not positive definite' End If 100 Format ((3X,1P,7E11.1)) 110 Format (1X, A, I3, A) End Program