概要
本サンプルはFortran言語によりLAPACKルーチンZHPGVを利用するサンプルプログラムです。
一般化エルミート固有値問題 のすべての固有値と固有ベクトルを求めます。及び
の条件数の推定値と計算された固有値と固有ベクトルの誤差限界の近似値も合わせて求めます。
ZHPGVDの例題プログラムは一般化対称固有値問題 の解き方を示します。
入力データ
(本ルーチンの詳細はZHPGV のマニュアルページを参照)このデータをダウンロード |
ZHPGV Example Program Data 4 :Value of N (-7.36, 0.00) ( 0.77, -0.43) (-0.64, -0.92) ( 3.01, -6.97) ( 3.49, 0.00) ( 2.19, 4.45) ( 1.90, 3.73) ( 0.12, 0.00) ( 2.88, -3.17) (-2.54, 0.00) :End of matrix A ( 3.23, 0.00) ( 1.51, -1.92) ( 1.90, 0.84) ( 0.42, 2.50) ( 3.58, 0.00) (-0.23, 1.11) (-1.18, 1.37) ( 4.09, 0.00) ( 2.33, -0.14) ( 4.29, 0.00) :End of matrix B
出力結果
(本ルーチンの詳細はZHPGV のマニュアルページを参照)この出力例をダウンロード |
ZHPGV Example Program Results Eigenvalues -5.9990 -2.9936 0.5047 3.9990 Estimate of reciprocal condition number for B 2.5E-03 Error estimates for the eigenvalues 6.7E-13 4.1E-13 1.9E-13 5.0E-13
ソースコード
(本ルーチンの詳細はZHPGV のマニュアルページを参照)※本サンプルソースコードのご利用手順は「サンプルのコンパイル及び実行方法」をご参照下さい。
このソースコードをダウンロード |
Program zhpgv_example ! ZHPGV Example Program Text ! Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com ! .. Use Statements .. Use lapack_interfaces, Only: zhpgv, zlanhp, ztpcon Use lapack_precision, Only: dp ! .. Implicit None Statement .. Implicit None ! .. Parameters .. Integer, Parameter :: nin = 5, nout = 6 Character (1), Parameter :: uplo = 'U' ! .. Local Scalars .. Real (Kind=dp) :: anorm, bnorm, eps, rcond, rcondb, t1, t2 Integer :: i, info, j, n ! .. Local Arrays .. Complex (Kind=dp), Allocatable :: ap(:), bp(:), work(:) Complex (Kind=dp) :: dummy(1, 1) Real (Kind=dp), Allocatable :: eerbnd(:), rwork(:), w(:) ! .. Intrinsic Procedures .. Intrinsic :: abs, epsilon ! .. Executable Statements .. Write (nout, *) 'ZHPGV Example Program Results' Write (nout, *) ! Skip heading in data file Read (nin, *) Read (nin, *) n Allocate (ap((n*(n+1))/2), bp((n*(n+1))/2), work(2*n), eerbnd(n), rwork( & 3*n-2), w(n)) ! Read the upper or lower triangular parts of the matrices A and ! B from data file If (uplo=='U') Then Read (nin, *)((ap(i+(j*(j-1))/2),j=i,n), i=1, n) Read (nin, *)((bp(i+(j*(j-1))/2),j=i,n), i=1, n) Else If (uplo=='L') Then Read (nin, *)((ap(i+((2*n-j)*(j-1))/2),j=1,i), i=1, n) Read (nin, *)((bp(i+((2*n-j)*(j-1))/2),j=1,i), i=1, n) End If ! Compute the one-norms of the symmetric matrices A and B anorm = zlanhp('One norm', uplo, n, ap, rwork) bnorm = zlanhp('One norm', uplo, n, bp, rwork) ! Solve the generalized symmetric eigenvalue problem ! A*x = lambda*B*x (ITYPE = 1) Call zhpgv(1, 'No vectors', uplo, n, ap, bp, w, dummy, 1, work, rwork, & info) If (info==0) Then ! Print solution Write (nout, *) 'Eigenvalues' Write (nout, 100) w(1:n) ! Call ZTPCON to estimate the reciprocal condition ! number of the Cholesky factor of B. Note that: ! cond(B) = 1/RCOND**2 Call ztpcon('One norm', uplo, 'Non-unit', n, bp, rcond, work, rwork, & info) ! Print the reciprocal condition number of B rcondb = rcond**2 Write (nout, *) Write (nout, *) 'Estimate of reciprocal condition number for B' Write (nout, 110) rcondb ! Get the machine precision, EPS, and if RCONDB is not less ! than EPS**2, compute error estimates for the eigenvalues eps = epsilon(1.0E0_dp) If (rcond>=eps) Then t1 = eps/rcondb t2 = anorm/bnorm Do i = 1, n eerbnd(i) = t1*(t2+abs(w(i))) End Do ! Print the approximate error bounds for the eigenvalues Write (nout, *) Write (nout, *) 'Error estimates for the eigenvalues' Write (nout, 110) eerbnd(1:n) Else Write (nout, *) Write (nout, *) 'B is very ill-conditioned, error ', & 'estimates have not been computed' End If Else If (info>n .And. info<=2*n) Then i = info - n Write (nout, 120) 'The leading minor of order ', i, & ' of B is not positive definite' Else Write (nout, 130) 'Failure in ZHPGV. INFO =', info End If 100 Format (3X, (6F11.4)) 110 Format (4X, 1P, 6E11.1) 120 Format (1X, A, I4, A) 130 Format (1X, A, I4) End Program