複素一般化エルミート固有値問題: エルミート定値一般化行列 : (全ての固有値およびオプショナルで固有ベクトル)

LAPACKサンプルソースコード : 使用ルーチン名:ZHEGV

概要

本サンプルはFortran言語によりLAPACKルーチンZHEGVを利用するサンプルプログラムです。

一般化エルミート固有値問題 $ A x = \lambda B x$の全て固有値と固有ベクトルを求めます。

\begin{displaymath}
A = \left(
\begin{array}{cccc}
-7.36 & 0.77 - 0.43i & -0....
...97i & 1.90 - 3.73i & 2.88 + 3.17i & -2.54
\end{array} \right)
\end{displaymath}

及び

\begin{displaymath}
B = \left(
\begin{array}{cccc}
3.23 & 1.51 - 1.92i & 1.90...
...0i & -1.18 - 1.37i & 2.33 + 0.14i & 4.29
\end{array} \right),
\end{displaymath}

$ B$の条件数の推定値と計算された固有値と固有ベクトルの誤差限界の近似値を求めます。

ZHEGVDの例題プログラムは一般化エルミート固有値問題 $ A B x = \lambda x$の解き方を示します。

入力データ

(本ルーチンの詳細はZHEGV のマニュアルページを参照)

このデータをダウンロード
ZHEGV Example Program Data

   4                                                        :Value of N

 (-7.36, 0.00) ( 0.77, -0.43) (-0.64, -0.92) ( 3.01, -6.97)
               ( 3.49,  0.00) ( 2.19,  4.45) ( 1.90,  3.73)
                              ( 0.12,  0.00) ( 2.88, -3.17)
                                             (-2.54,  0.00) :End of matrix A

 ( 3.23, 0.00) ( 1.51, -1.92) ( 1.90,  0.84) ( 0.42,  2.50)
               ( 3.58,  0.00) (-0.23,  1.11) (-1.18,  1.37)
                              ( 4.09,  0.00) ( 2.33, -0.14)
                                             ( 4.29,  0.00) :End of matrix B

出力結果

(本ルーチンの詳細はZHEGV のマニュアルページを参照)

この出力例をダウンロード
 ZHEGV Example Program Results

 Eigenvalues
       -5.9990    -2.9936     0.5047     3.9990
 Eigenvectors
             1          2          3          4
 1      1.7405    -0.6626     0.2835     1.2378
        0.0000     0.2258    -0.5806     0.0000
 
 2     -0.4136    -0.1164    -0.3769    -0.5608
       -0.4689    -0.0178    -0.3194    -0.3729
 
 3     -0.8404     0.9098    -0.3338    -0.6643
       -0.2483     0.0000    -0.0134    -0.1021
 
 4      0.3021    -0.6120     0.6663     0.1589
        0.6103    -0.5348     0.0000     0.8366

 Estimate of reciprocal condition number for B
        2.5E-03

 Error estimates for the eigenvalues
        6.7E-13    4.1E-13    1.9E-13    5.0E-13

 Error estimates for the eigenvectors
        1.2E-12    1.1E-12    8.5E-13    9.4E-13

ソースコード

(本ルーチンの詳細はZHEGV のマニュアルページを参照)

※本サンプルソースコードのご利用手順は「サンプルのコンパイル及び実行方法」をご参照下さい。


このソースコードをダウンロード
    Program zhegv_example

!     ZHEGV Example Program Text

!     Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com

!     .. Use Statements ..
      Use lapack_example_aux, Only: nagf_file_print_matrix_complex_gen
      Use lapack_interfaces, Only: ddisna, zhegv, zlanhe, ztrcon
      Use lapack_precision, Only: dp
!     .. Implicit None Statement ..
      Implicit None
!     .. Parameters ..
      Integer, Parameter :: nb = 64, nin = 5, nout = 6
!     .. Local Scalars ..
      Complex (Kind=dp) :: scal
      Real (Kind=dp) :: anorm, bnorm, eps, rcond, rcondb, t1, t2, t3
      Integer :: i, ifail, info, k, lda, ldb, lwork, n
!     .. Local Arrays ..
      Complex (Kind=dp), Allocatable :: a(:, :), b(:, :), work(:)
      Complex (Kind=dp) :: dummy(1)
      Real (Kind=dp), Allocatable :: eerbnd(:), rcondz(:), rwork(:), w(:), &
        zerbnd(:)
!     .. Intrinsic Procedures ..
      Intrinsic :: abs, conjg, epsilon, max, maxloc, nint, real
!     .. Executable Statements ..
      Write (nout, *) 'ZHEGV Example Program Results'
      Write (nout, *)
!     Skip heading in data file
      Read (nin, *)
      Read (nin, *) n
      lda = n
      ldb = n
      Allocate (a(lda,n), b(ldb,n), eerbnd(n), rcondz(n), rwork(3*n-2), w(n), &
        zerbnd(n))

!     Use routine workspace query to get optimal workspace.
      lwork = -1
      Call zhegv(1, 'Vectors', 'Upper', n, a, lda, b, ldb, w, dummy, lwork, &
        rwork, info)

!     Make sure that there is enough workspace for block size nb.
      lwork = max((nb+1)*n, nint(real(dummy(1))))
      Allocate (work(lwork))

!     Read the upper triangular parts of the matrices A and B

      Read (nin, *)(a(i,i:n), i=1, n)
      Read (nin, *)(b(i,i:n), i=1, n)

!     Compute the one-norms of the symmetric matrices A and B

      anorm = zlanhe('One norm', 'Upper', n, a, lda, rwork)
      bnorm = zlanhe('One norm', 'Upper', n, b, ldb, rwork)

!     Solve the generalized Hermitian eigenvalue problem
!     A*x = lambda*B*x (itype = 1)

      Call zhegv(1, 'Vectors', 'Upper', n, a, lda, b, ldb, w, work, lwork, &
        rwork, info)

      If (info==0) Then

!       Print solution

        Write (nout, *) 'Eigenvalues'
        Write (nout, 100) w(1:n)
        Flush (nout)

!       Normalize the eigenvectors, largest element real
!       (normalization w.r.t B unaffected: Z^HBZ = I).
        Do i = 1, n
          rwork(1:n) = abs(a(1:n,i))
          k = maxloc(rwork(1:n), 1)
          scal = conjg(a(k,i))/abs(a(k,i))
          a(1:n, i) = a(1:n, i)*scal
        End Do

!       ifail: behaviour on error exit
!              =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
        ifail = 0
        Call nagf_file_print_matrix_complex_gen('General', ' ', n, n, a, lda, &
          'Eigenvectors', ifail)

!       Call ZTRCON to estimate the reciprocal condition
!       number of the Cholesky factor of B.  Note that:
!       cond(B) = 1/rcond**2
        Call ztrcon('One norm', 'Upper', 'Non-unit', n, b, ldb, rcond, work, &
          rwork, info)

!       Print the reciprocal condition number of B

        rcondb = rcond**2
        Write (nout, *)
        Write (nout, *) 'Estimate of reciprocal condition number for B'
        Write (nout, 110) rcondb
        Flush (nout)

!       Get the machine precision, eps, and if rcondb is not less
!       than eps**2, compute error estimates for the eigenvalues and
!       eigenvectors

        eps = epsilon(1.0E0_dp)
        If (rcond>=eps) Then

!         Call DDISNA to estimate reciprocal condition
!         numbers for the eigenvectors of (A - lambda*B)

          Call ddisna('Eigenvectors', n, n, w, rcondz, info)

!         Compute the error estimates for the eigenvalues and
!         eigenvectors

          t1 = eps/rcondb
          t2 = anorm/bnorm
          t3 = t2/rcond
          Do i = 1, n
            eerbnd(i) = t1*(t2+abs(w(i)))
            zerbnd(i) = t1*(t3+abs(w(i)))/rcondz(i)
          End Do

!         Print the approximate error bounds for the eigenvalues
!         and vectors

          Write (nout, *)
          Write (nout, *) 'Error estimates for the eigenvalues'
          Write (nout, 110) eerbnd(1:n)
          Write (nout, *)
          Write (nout, *) 'Error estimates for the eigenvectors'
          Write (nout, 110) zerbnd(1:n)
        Else
          Write (nout, *)
          Write (nout, *) 'B is very ill-conditioned, error ', &
            'estimates have not been computed'
        End If
      Else If (info>n) Then
        i = info - n
        Write (nout, 120) 'The leading minor of order ', i, &
          ' of B is not positive definite'
      Else
        Write (nout, 130) 'Failure in ZHEGV. INFO =', info
      End If

100   Format (3X, (6F11.4))
110   Format (4X, 1P, 6E11.1)
120   Format (1X, A, I4, A)
130   Format (1X, A, I4)
    End Program


ご案内
関連情報
Privacy Policy  /  Trademarks