概要
本サンプルはFortran言語によりLAPACKルーチンZGESVXを利用するサンプルプログラムです。
以下の式を解きます。
及び

解のエラー推定値、スケーリングについての情報、スケーリングされた行列
入力データ
(本ルーチンの詳細はZGESVX のマニュアルページを参照)| このデータをダウンロード |
ZGESVX Example Program Data 4 2 :Values of N and NRHS (-1.34, 2.55) ( 0.28, 3.17) (-6.39,-2.20) ( 0.72,-0.92) (-1.70,-14.10) ( 33.10, -1.50) (-1.50,13.40) (12.90,13.80) (-3.29, -2.39) ( -1.91, 4.42) (-0.14,-1.35) ( 1.72, 1.35) ( 2.41, 0.39) ( -0.56, 1.47) (-0.83,-0.69) (-1.96, 0.67) :End of matrix A (26.26, 51.78) ( 31.32, -6.70) (64.30,-86.80) (158.60,-14.20) (-5.75, 25.31) ( -2.15, 30.19) ( 1.16, 2.57) ( -2.56, 7.55) :End of matrix B
出力結果
(本ルーチンの詳細はZGESVX のマニュアルページを参照)| この出力例をダウンロード |
ZGESVX Example Program Results
Solution(s)
1 2
1 ( 1.0000, 1.0000) (-1.0000,-2.0000)
2 ( 2.0000,-3.0000) ( 5.0000, 1.0000)
3 (-4.0000,-5.0000) (-3.0000, 4.0000)
4 ( 0.0000, 6.0000) ( 2.0000,-3.0000)
Backward errors (machine-dependent)
5.3E-17 4.8E-17
Estimated forward error bounds (machine-dependent)
5.8E-14 7.4E-14
A has been row scaled as diag(R)*A
Reciprocal condition number estimate of scaled matrix
1.0E-02
Estimate of reciprocal pivot growth factor
8.3E-01
ソースコード
(本ルーチンの詳細はZGESVX のマニュアルページを参照)※本サンプルソースコードのご利用手順は「サンプルのコンパイル及び実行方法」をご参照下さい。
| このソースコードをダウンロード |
Program zgesvx_example
! ZGESVX Example Program Text
! Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com
! .. Use Statements ..
Use lapack_example_aux, Only: nagf_file_print_matrix_complex_gen_comp
Use lapack_interfaces, Only: zgesvx
Use lapack_precision, Only: dp
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..
Real (Kind=dp) :: rcond
Integer :: i, ifail, info, lda, ldaf, ldb, ldx, n, nrhs
Character (1) :: equed
! .. Local Arrays ..
Complex (Kind=dp), Allocatable :: a(:, :), af(:, :), b(:, :), work(:), &
x(:, :)
Real (Kind=dp), Allocatable :: berr(:), c(:), ferr(:), r(:), rwork(:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)
! .. Executable Statements ..
Write (nout, *) 'ZGESVX Example Program Results'
Write (nout, *)
Flush (nout)
! Skip heading in data file
Read (nin, *)
Read (nin, *) n, nrhs
lda = n
ldaf = n
ldb = n
ldx = n
Allocate (a(lda,n), af(ldaf,n), b(ldb,nrhs), work(2*n), x(ldx,nrhs), &
berr(nrhs), c(n), ferr(nrhs), r(n), rwork(2*n), ipiv(n))
! Read A and B from data file
Read (nin, *)(a(i,1:n), i=1, n)
Read (nin, *)(b(i,1:nrhs), i=1, n)
! Solve the equations AX = B for X
Call zgesvx('Equilibrate', 'No transpose', n, nrhs, a, lda, af, ldaf, &
ipiv, equed, r, c, b, ldb, x, ldx, rcond, ferr, berr, work, rwork, &
info)
If ((info==0) .Or. (info==n+1)) Then
! Print solution, error bounds, condition number, the form
! of equilibration and the pivot growth factor
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0
Call nagf_file_print_matrix_complex_gen_comp('General', ' ', n, nrhs, &
x, ldx, 'Bracketed', 'F7.4', 'Solution(s)', 'Integer', rlabs, &
'Integer', clabs, 80, 0, ifail)
Write (nout, *)
Write (nout, *) 'Backward errors (machine-dependent)'
Write (nout, 100) berr(1:nrhs)
Write (nout, *)
Write (nout, *) 'Estimated forward error bounds (machine-dependent)'
Write (nout, 100) ferr(1:nrhs)
Write (nout, *)
If (equed=='N') Then
Write (nout, *) 'A has not been equilibrated'
Else If (equed=='R') Then
Write (nout, *) 'A has been row scaled as diag(R)*A'
Else If (equed=='C') Then
Write (nout, *) 'A has been column scaled as A*diag(C)'
Else If (equed=='B') Then
Write (nout, *) &
'A has been row and column scaled as diag(R)*A*diag(C)'
End If
Write (nout, *)
Write (nout, *) &
'Reciprocal condition number estimate of scaled matrix'
Write (nout, 100) rcond
Write (nout, *)
Write (nout, *) 'Estimate of reciprocal pivot growth factor'
Write (nout, 100) rwork(1)
If (info==n+1) Then
Write (nout, *)
Write (nout, *) 'The matrix A is singular to working precision'
End If
Else
Write (nout, 110) 'The (', info, ',', info, ')', &
' element of the factor U is zero'
End If
100 Format ((3X,1P,7E11.1))
110 Format (1X, A, I3, A, I3, A, A)
End Program
