概要
本サンプルはFortran言語によりLAPACKルーチンZGBSVXを利用するサンプルプログラムです。
以下の式を解きます。
及び

後方エラーと前方エラーの推定値、条件数、軸要素成長乗数、及び
入力データ
(本ルーチンの詳細はZGBSVX のマニュアルページを参照)| このデータをダウンロード |
ZGBSVX Example Program Data
4 2 1 2 :Values of N, NRHS, KL and KU
(-1.65, 2.26) (-2.05,-0.85) ( 0.97,-2.84)
( 0.00, 6.30) (-1.48,-1.75) (-3.99, 4.01) ( 0.59,-0.48)
(-0.77, 2.83) (-1.06, 1.94) ( 3.33,-1.04)
( 4.48,-1.09) (-0.46,-1.72) :End of matrix A
( -1.06, 21.50) ( 12.85, 2.84)
(-22.72,-53.90) (-70.22, 21.57)
( 28.24,-38.60) (-20.73, -1.23)
(-34.56, 16.73) ( 26.01, 31.97) :End of matrix B
出力結果
(本ルーチンの詳細はZGBSVX のマニュアルページを参照)| この出力例をダウンロード |
ZGBSVX Example Program Results
Solution(s)
1 2
1 (-3.0000, 2.0000) ( 1.0000, 6.0000)
2 ( 1.0000,-7.0000) (-7.0000,-4.0000)
3 (-5.0000, 4.0000) ( 3.0000, 5.0000)
4 ( 6.0000,-8.0000) (-8.0000, 2.0000)
Backward errors (machine-dependent)
1.8E-17 5.1E-17
Estimated forward error bounds (machine-dependent)
3.5E-14 4.3E-14
Estimate of reciprocal condition number
9.6E-03
A has not been equilibrated
Estimate of reciprocal pivot growth factor
1.0E+00
ソースコード
(本ルーチンの詳細はZGBSVX のマニュアルページを参照)※本サンプルソースコードのご利用手順は「サンプルのコンパイル及び実行方法」をご参照下さい。
| このソースコードをダウンロード |
Program zgbsvx_example
! ZGBSVX Example Program Text
! Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com
! .. Use Statements ..
Use lapack_example_aux, Only: nagf_file_print_matrix_complex_gen_comp
Use lapack_interfaces, Only: zgbsvx
Use lapack_precision, Only: dp
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..
Real (Kind=dp) :: rcond
Integer :: i, ifail, info, j, k, kl, ku, ldab, ldafb, ldb, ldx, n, nrhs
Character (1) :: equed
! .. Local Arrays ..
Complex (Kind=dp), Allocatable :: ab(:, :), afb(:, :), b(:, :), work(:), &
x(:, :)
Real (Kind=dp), Allocatable :: berr(:), c(:), ferr(:), r(:), rwork(:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)
! .. Intrinsic Procedures ..
Intrinsic :: max, min
! .. Executable Statements ..
Write (nout, *) 'ZGBSVX Example Program Results'
Write (nout, *)
Flush (nout)
! Skip heading in data file
Read (nin, *)
Read (nin, *) n, nrhs, kl, ku
ldb = n
ldx = n
ldab = kl + ku + 1
ldafb = ldab + kl
Allocate (ab(ldab,n), afb(ldafb,n), b(ldb,nrhs), work(2*n), x(ldx,nrhs), &
berr(nrhs), c(n), ferr(nrhs), r(n), rwork(n), ipiv(n))
! Read the band matrix A and B from data file
k = ku + 1
Read (nin, *)((ab(k+i-j,j),j=max(i-kl,1),min(i+ku,n)), i=1, n)
Read (nin, *)(b(i,1:nrhs), i=1, n)
! Solve the equations AX = B for X
Call zgbsvx('Equilibration', 'No transpose', n, kl, ku, nrhs, ab, ldab, &
afb, ldafb, ipiv, equed, r, c, b, ldb, x, ldx, rcond, ferr, berr, &
work, rwork, info)
If ((info==0) .Or. (info==n+1)) Then
! Print solution, error bounds, condition number, the form
! of equilibration and the pivot growth factor
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0
Call nagf_file_print_matrix_complex_gen_comp('General', ' ', n, nrhs, &
x, ldx, 'Bracketed', 'F7.4', 'Solution(s)', 'Integer', rlabs, &
'Integer', clabs, 80, 0, ifail)
Write (nout, *)
Write (nout, *) 'Backward errors (machine-dependent)'
Write (nout, 100) berr(1:nrhs)
Write (nout, *)
Write (nout, *) 'Estimated forward error bounds (machine-dependent)'
Write (nout, 100) ferr(1:nrhs)
Write (nout, *)
Write (nout, *) 'Estimate of reciprocal condition number'
Write (nout, 100) rcond
Write (nout, *)
If (equed=='N') Then
Write (nout, *) 'A has not been equilibrated'
Else If (equed=='R') Then
Write (nout, *) 'A has been row scaled as diag(R)*A'
Else If (equed=='C') Then
Write (nout, *) 'A has been column scaled as A*diag(C)'
Else If (equed=='B') Then
Write (nout, *) &
'A has been row and column scaled as diag(R)*A*diag(C)'
End If
Write (nout, *)
Write (nout, *) 'Estimate of reciprocal pivot growth factor'
Write (nout, 100) rwork(1)
If (info==n+1) Then
Write (nout, *)
Write (nout, *) 'The matrix A is singular to working precision'
End If
Else
Write (nout, 110) 'The (', info, ',', info, ')', &
' element of the factor U is zero'
End If
100 Format ((3X,1P,7E11.1))
110 Format (1X, A, I3, A, I3, A, A)
End Program
