概要
本サンプルはFortran言語によりLAPACKルーチンZGBSVXを利用するサンプルプログラムです。
以下の式を解きます。は帯行列です。
及び
後方エラーと前方エラーの推定値、条件数、軸要素成長乗数、及びの均衡化についてが合わせて出力されます。
入力データ
(本ルーチンの詳細はZGBSVX のマニュアルページを参照)このデータをダウンロード |
ZGBSVX Example Program Data 4 2 1 2 :Values of N, NRHS, KL and KU (-1.65, 2.26) (-2.05,-0.85) ( 0.97,-2.84) ( 0.00, 6.30) (-1.48,-1.75) (-3.99, 4.01) ( 0.59,-0.48) (-0.77, 2.83) (-1.06, 1.94) ( 3.33,-1.04) ( 4.48,-1.09) (-0.46,-1.72) :End of matrix A ( -1.06, 21.50) ( 12.85, 2.84) (-22.72,-53.90) (-70.22, 21.57) ( 28.24,-38.60) (-20.73, -1.23) (-34.56, 16.73) ( 26.01, 31.97) :End of matrix B
出力結果
(本ルーチンの詳細はZGBSVX のマニュアルページを参照)この出力例をダウンロード |
ZGBSVX Example Program Results Solution(s) 1 2 1 (-3.0000, 2.0000) ( 1.0000, 6.0000) 2 ( 1.0000,-7.0000) (-7.0000,-4.0000) 3 (-5.0000, 4.0000) ( 3.0000, 5.0000) 4 ( 6.0000,-8.0000) (-8.0000, 2.0000) Backward errors (machine-dependent) 1.8E-17 5.1E-17 Estimated forward error bounds (machine-dependent) 3.5E-14 4.3E-14 Estimate of reciprocal condition number 9.6E-03 A has not been equilibrated Estimate of reciprocal pivot growth factor 1.0E+00
ソースコード
(本ルーチンの詳細はZGBSVX のマニュアルページを参照)※本サンプルソースコードのご利用手順は「サンプルのコンパイル及び実行方法」をご参照下さい。
このソースコードをダウンロード |
Program zgbsvx_example ! ZGBSVX Example Program Text ! Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com ! .. Use Statements .. Use lapack_example_aux, Only: nagf_file_print_matrix_complex_gen_comp Use lapack_interfaces, Only: zgbsvx Use lapack_precision, Only: dp ! .. Implicit None Statement .. Implicit None ! .. Parameters .. Integer, Parameter :: nin = 5, nout = 6 ! .. Local Scalars .. Real (Kind=dp) :: rcond Integer :: i, ifail, info, j, k, kl, ku, ldab, ldafb, ldb, ldx, n, nrhs Character (1) :: equed ! .. Local Arrays .. Complex (Kind=dp), Allocatable :: ab(:, :), afb(:, :), b(:, :), work(:), & x(:, :) Real (Kind=dp), Allocatable :: berr(:), c(:), ferr(:), r(:), rwork(:) Integer, Allocatable :: ipiv(:) Character (1) :: clabs(1), rlabs(1) ! .. Intrinsic Procedures .. Intrinsic :: max, min ! .. Executable Statements .. Write (nout, *) 'ZGBSVX Example Program Results' Write (nout, *) Flush (nout) ! Skip heading in data file Read (nin, *) Read (nin, *) n, nrhs, kl, ku ldb = n ldx = n ldab = kl + ku + 1 ldafb = ldab + kl Allocate (ab(ldab,n), afb(ldafb,n), b(ldb,nrhs), work(2*n), x(ldx,nrhs), & berr(nrhs), c(n), ferr(nrhs), r(n), rwork(n), ipiv(n)) ! Read the band matrix A and B from data file k = ku + 1 Read (nin, *)((ab(k+i-j,j),j=max(i-kl,1),min(i+ku,n)), i=1, n) Read (nin, *)(b(i,1:nrhs), i=1, n) ! Solve the equations AX = B for X Call zgbsvx('Equilibration', 'No transpose', n, kl, ku, nrhs, ab, ldab, & afb, ldafb, ipiv, equed, r, c, b, ldb, x, ldx, rcond, ferr, berr, & work, rwork, info) If ((info==0) .Or. (info==n+1)) Then ! Print solution, error bounds, condition number, the form ! of equilibration and the pivot growth factor ! ifail: behaviour on error exit ! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft ifail = 0 Call nagf_file_print_matrix_complex_gen_comp('General', ' ', n, nrhs, & x, ldx, 'Bracketed', 'F7.4', 'Solution(s)', 'Integer', rlabs, & 'Integer', clabs, 80, 0, ifail) Write (nout, *) Write (nout, *) 'Backward errors (machine-dependent)' Write (nout, 100) berr(1:nrhs) Write (nout, *) Write (nout, *) 'Estimated forward error bounds (machine-dependent)' Write (nout, 100) ferr(1:nrhs) Write (nout, *) Write (nout, *) 'Estimate of reciprocal condition number' Write (nout, 100) rcond Write (nout, *) If (equed=='N') Then Write (nout, *) 'A has not been equilibrated' Else If (equed=='R') Then Write (nout, *) 'A has been row scaled as diag(R)*A' Else If (equed=='C') Then Write (nout, *) 'A has been column scaled as A*diag(C)' Else If (equed=='B') Then Write (nout, *) & 'A has been row and column scaled as diag(R)*A*diag(C)' End If Write (nout, *) Write (nout, *) 'Estimate of reciprocal pivot growth factor' Write (nout, 100) rwork(1) If (info==n+1) Then Write (nout, *) Write (nout, *) 'The matrix A is singular to working precision' End If Else Write (nout, 110) 'The (', info, ',', info, ')', & ' element of the factor U is zero' End If 100 Format ((3X,1P,7E11.1)) 110 Format (1X, A, I3, A, I3, A, A) End Program