Program dptrfs_example
! DPTRFS Example Program Text
! Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com
! .. Use Statements ..
Use lapack_example_aux, Only: nagf_file_print_matrix_real_gen
Use lapack_interfaces, Only: dptrfs, dpttrf, dpttrs
Use lapack_precision, Only: dp
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..
Integer :: i, ifail, info, ldb, ldx, n, nrhs
! .. Local Arrays ..
Real (Kind=dp), Allocatable :: b(:, :), berr(:), d(:), df(:), e(:), &
ef(:), ferr(:), work(:), x(:, :)
! .. Executable Statements ..
Write (nout, *) 'DPTRFS Example Program Results'
Write (nout, *)
Flush (nout)
! Skip heading in data file
Read (nin, *)
Read (nin, *) n, nrhs
ldb = n
ldx = n
Allocate (b(ldb,nrhs), berr(nrhs), d(n), df(n), e(n-1), ef(n-1), &
ferr(nrhs), work(2*n), x(ldx,nrhs))
! Read the lower bidiagonal part of the tridiagonal matrix A from
! data file
Read (nin, *) d(1:n)
Read (nin, *) e(1:n-1)
! Read the right hand matrix B
Read (nin, *)(b(i,1:nrhs), i=1, n)
! Copy A into DF and EF, and copy B into X
df(1:n) = d(1:n)
ef(1:n-1) = e(1:n-1)
x(1:n, 1:nrhs) = b(1:n, 1:nrhs)
! Factorize the copy of the tridiagonal matrix A
Call dpttrf(n, df, ef, info)
If (info==0) Then
! Solve the equations AX = B
Call dpttrs(n, nrhs, df, ef, x, ldx, info)
! Improve the solution and compute error estimates
Call dptrfs(n, nrhs, d, e, df, ef, b, ldb, x, ldx, ferr, berr, work, &
info)
! Print the solution and the forward and backward error
! estimates
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0
Call nagf_file_print_matrix_real_gen('General', ' ', n, nrhs, x, ldx, &
'Solution(s)', ifail)
Write (nout, *)
Write (nout, *) 'Backward errors (machine-dependent)'
Write (nout, 100) berr(1:nrhs)
Write (nout, *)
Write (nout, *) 'Estimated forward error bounds (machine-dependent)'
Write (nout, 100) ferr(1:nrhs)
Else
Write (nout, 110) 'The leading minor of order ', info, &
' is not positive definite'
End If
100 Format ((3X,1P,7E11.1))
110 Format (1X, A, I3, A)
End Program