Program dggsvp3_example
! DGGSVP3 Example Program Text
! Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com
! .. Use Statements ..
Use lapack_example_aux, Only: nagf_file_print_matrix_real_gen_comp
Use lapack_interfaces, Only: dggsvp3, dlange, dtgsja
Use lapack_precision, Only: dp
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..
Real (Kind=dp) :: eps, tola, tolb
Integer :: i, ifail, info, irank, j, k, l, lda, ldb, ldq, ldu, ldv, &
lwork, m, n, ncycle, p
! .. Local Arrays ..
Real (Kind=dp), Allocatable :: a(:, :), alpha(:), b(:, :), beta(:), &
q(:, :), tau(:), u(:, :), v(:, :), work(:)
Real (Kind=dp) :: wdum(1)
Integer, Allocatable :: iwork(:)
Character (1) :: clabs(1), rlabs(1)
! .. Intrinsic Procedures ..
Intrinsic :: epsilon, max, nint, real
! .. Executable Statements ..
Write (nout, *) 'DGGSVP3 Example Program Results'
Write (nout, *)
Flush (nout)
! Skip heading in data file
Read (nin, *)
Read (nin, *) m, n, p
lda = m
ldb = p
ldq = n
ldu = m
ldv = p
Allocate (a(lda,n), alpha(n), b(ldb,n), beta(n), q(ldq,n), tau(n), &
u(ldu,m), v(ldv,p), iwork(n))
! Perform workspace query to get optimal size of work
lwork = -1
Call dggsvp3('U', 'V', 'Q', m, p, n, a, lda, b, ldb, tola, tolb, k, l, &
u, ldu, v, ldv, q, ldq, iwork, tau, wdum, lwork, info)
lwork = nint(wdum(1))
Allocate (work(lwork))
! Read the m by n matrix A and p by n matrix B from data file
Read (nin, *)(a(i,1:n), i=1, m)
Read (nin, *)(b(i,1:n), i=1, p)
! Compute tola and tolb as
! tola = max(m,n)*norm(A)*macheps
! tolb = max(p,n)*norm(B)*macheps
eps = epsilon(1.0E0_dp)
tola = real(max(m,n), kind=dp)*dlange('One-norm', m, n, a, lda, work)* &
eps
tolb = real(max(p,n), kind=dp)*dlange('One-norm', p, n, b, ldb, work)* &
eps
! Compute the factorization of (A, B)
! (A = U*S*(Q**T), B = V*T*(Q**T))
Call dggsvp3('U', 'V', 'Q', m, p, n, a, lda, b, ldb, tola, tolb, k, l, &
u, ldu, v, ldv, q, ldq, iwork, tau, work, lwork, info)
! Given the factors above find the generalized SVD of (A, B)
Call dtgsja('U', 'V', 'Q', m, p, n, k, l, a, lda, b, ldb, tola, tolb, &
alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle, info)
! Print solution
irank = k + l
Write (nout, *) 'Number of infinite generalized singular values (k)'
Write (nout, 100) k
Write (nout, *) 'Number of finite generalized singular values (l)'
Write (nout, 100) l
Write (nout, *) 'Effective Numerical rank of (A; B) (k+l)'
Write (nout, 100) irank
Write (nout, *)
Write (nout, *) 'Finite generalized singular values'
Write (nout, 110)(alpha(j)/beta(j), j=k+1, irank)
Write (nout, *)
Flush (nout)
Call nagf_file_print_matrix_real_gen_comp('General', ' ', m, m, u, ldu, &
'1P,E12.4', 'Orthogonal matrix U', 'Integer', rlabs, 'Integer', clabs, &
80, 0, ifail)
Write (nout, *)
Flush (nout)
Call nagf_file_print_matrix_real_gen_comp('General', ' ', p, p, v, ldv, &
'1P,E12.4', 'Orthogonal matrix V', 'Integer', rlabs, 'Integer', clabs, &
80, 0, ifail)
Write (nout, *)
Flush (nout)
Call nagf_file_print_matrix_real_gen_comp('General', ' ', n, n, q, ldq, &
'1P,E12.4', 'Orthogonal matrix Q', 'Integer', rlabs, 'Integer', clabs, &
80, 0, ifail)
Write (nout, *)
Flush (nout)
Call nagf_file_print_matrix_real_gen_comp('Upper triangular', &
'Non-unit', irank, irank, a(1,n-irank+1), lda, '1P,E12.4', &
'Nonsingular upper triangular matrix R', 'Integer', rlabs, 'Integer', &
clabs, 80, 0, ifail)
Write (nout, *)
Write (nout, *) 'Number of cycles of the Kogbetliantz method'
Write (nout, 100) ncycle
100 Format (1X, I5)
110 Format (3X, 8(1P,E12.4))
End Program