実一般化非対称固有値問題: 実非対称行列ペアの一般化固有値と一般化実シュール形式 : (オプションで左/右一般化シュールベクトル)

LAPACKサンプルソースコード : 使用ルーチン名:DGGES

ホーム > LAPACKサンプルプログラム目次 > 実一般化非対称固有値問題 > 実非対称行列ペアの一般化固有値と一般化実シュール形式

概要

本サンプルはFortran言語によりLAPACKルーチンDGGESを利用するサンプルプログラムです。

行列対 $ (A,B)$の一般化Schur分解を行います。

\begin{displaymath}
A = \left(
\begin{array}{rrrr}
3.9 & 12.5 & -34.5 & -0.5 ...
...& -4.0 & 3.0 \\
1.0 & 3.0 & -4.0 & 4.0
\end{array} \right),
\end{displaymath}

ここで $ (A,B)$の固有値が一般化Schur形式 $ (S,T)$の左上対角要素に対応するようにします。

入力データ

(本ルーチンの詳細はDGGES のマニュアルページを参照)

このデータをダウンロード
DGGES Example Program Data
   4                     :Value of N
   3.9  12.5 -34.5  -0.5
   4.3  21.5 -47.5   7.5
   4.3  21.5 -43.5   3.5
   4.4  26.0 -46.0   6.0 :End of matrix A
   1.0   2.0  -3.0   1.0
   1.0   3.0  -5.0   4.0
   1.0   3.0  -4.0   3.0
   1.0   3.0  -4.0   4.0 :End of matrix B

出力結果

(本ルーチンの詳細はDGGES のマニュアルページを参照)

この出力例をダウンロード
 DGGES Example Program Results

 Matrix A
             1          2          3          4
 1      3.9000    12.5000   -34.5000    -0.5000
 2      4.3000    21.5000   -47.5000     7.5000
 3      4.3000    21.5000   -43.5000     3.5000
 4      4.4000    26.0000   -46.0000     6.0000

 Matrix B
             1          2          3          4
 1      1.0000     2.0000    -3.0000     1.0000
 2      1.0000     3.0000    -5.0000     4.0000
 3      1.0000     3.0000    -4.0000     3.0000
 4      1.0000     3.0000    -4.0000     4.0000

Warning: Floating underflow occurred
 Number of eigenvalues for which SELCTG is true =    2
 (dimension of deflating subspaces)

 Selected generalized eigenvalues
    1     (  2.000,  0.000)
    2     (  4.000,  0.000)


ソースコード

(本ルーチンの詳細はDGGES のマニュアルページを参照)

※本サンプルソースコードのご利用手順は「サンプルのコンパイル及び実行方法」をご参照下さい。


このソースコードをダウンロード
!   DGGES Example Program Text
!   Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com

    Module dgges_mod

!     DGGES Example Program Module:
!            Parameters and User-defined Routines

!     .. Use Statements ..
      Use lapack_precision, Only: dp
!     .. Implicit None Statement ..
      Implicit None
!     .. Accessibility Statements ..
      Private
      Public :: selctg
!     .. Parameters ..
      Integer, Parameter, Public :: nb = 64, nin = 5, nout = 6
    Contains
      Function selctg(ar, ai, b)

!       Logical function selctg for use with DGGES (DGGES)
!       Returns the value .TRUE. if the eigenvalue is real and positive

!       .. Function Return Value ..
        Logical :: selctg
!       .. Scalar Arguments ..
        Real (Kind=dp), Intent (In) :: ai, ar, b
!       .. Executable Statements ..
        selctg = (ar>0._dp .And. ai==0._dp .And. b/=0._dp)
        Return
      End Function
    End Module
    Program dgges_example

!     DGGES Example Main Program

!     .. Use Statements ..
      Use blas_interfaces, Only: dgemm
      Use dgges_mod, Only: nb, nin, nout, selctg
      Use lapack_example_aux, Only: nagf_file_print_matrix_real_gen
      Use lapack_interfaces, Only: dgges, dlange
      Use lapack_precision, Only: dp
!     .. Implicit None Statement ..
      Implicit None
!     .. Local Scalars ..
      Real (Kind=dp) :: alph, bet, normd, norme
      Integer :: i, ifail, info, lda, ldb, ldc, ldd, lde, ldvsl, ldvsr, lwork, &
        n, sdim
!     .. Local Arrays ..
      Real (Kind=dp), Allocatable :: a(:, :), alphai(:), alphar(:), b(:, :), &
        beta(:), c(:, :), d(:, :), e(:, :), vsl(:, :), vsr(:, :), work(:)
      Real (Kind=dp) :: dummy(1)
      Logical, Allocatable :: bwork(:)
!     .. Intrinsic Procedures ..
      Intrinsic :: epsilon, max, nint
!     .. Executable Statements ..
      Write (nout, *) 'DGGES Example Program Results'
      Write (nout, *)
      Flush (nout)
!     Skip heading in data file
      Read (nin, *)
      Read (nin, *) n
      lda = n
      ldb = n
      ldc = n
      ldd = n
      lde = n
      ldvsl = n
      ldvsr = n
      Allocate (a(lda,n), alphai(n), alphar(n), b(ldb,n), beta(n), &
        vsl(ldvsl,n), vsr(ldvsr,n), bwork(n), c(ldc,n), d(ldd,n), e(lde,n))

!     Use routine workspace query to get optimal workspace.
      lwork = -1
      Call dgges('Vectors (left)', 'Vectors (right)', 'Sort', selctg, n, a, &
        lda, b, ldb, sdim, alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr, &
        dummy, lwork, bwork, info)

!     Make sure that there is enough workspace for block size nb.
      lwork = max(8*n+16+n*nb, nint(dummy(1)))
      Allocate (work(lwork))

!     Read in the matrices A and B
      Read (nin, *)(a(i,1:n), i=1, n)
      Read (nin, *)(b(i,1:n), i=1, n)

!     Copy A and B into D and E respectively
      d(1:n, 1:n) = a(1:n, 1:n)
      e(1:n, 1:n) = b(1:n, 1:n)

!     Print matrices A and B
!     ifail: behaviour on error exit
!            =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
      ifail = 0
      Call nagf_file_print_matrix_real_gen('General', ' ', n, n, a, lda, &
        'Matrix A', ifail)
      Write (nout, *)
      Flush (nout)

      ifail = 0
      Call nagf_file_print_matrix_real_gen('General', ' ', n, n, b, ldb, &
        'Matrix B', ifail)
      Write (nout, *)
      Flush (nout)

!     Find the generalized Schur form
      Call dgges('Vectors (left)', 'Vectors (right)', 'Sort', selctg, n, a, &
        lda, b, ldb, sdim, alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr, work, &
        lwork, bwork, info)

      If (info==0 .Or. info==(n+2)) Then

!       Compute A - Q*S*Z^T from the factorization of (A,B) and store in
!       matrix D
        alph = 1.0_dp
        bet = 0.0_dp
        Call dgemm('N', 'N', n, n, n, alph, vsl, ldvsl, a, lda, bet, c, ldc)
        alph = -1.0_dp
        bet = 1.0_dp
        Call dgemm('N', 'T', n, n, n, alph, c, ldc, vsr, ldvsr, bet, d, ldd)

!       Compute B - Q*T*Z^T from the factorization of (A,B) and store in
!       matrix E
        alph = 1.0_dp
        bet = 0.0_dp
        Call dgemm('N', 'N', n, n, n, alph, vsl, ldvsl, b, ldb, bet, c, ldc)
        alph = -1.0_dp
        bet = 1.0_dp
        Call dgemm('N', 'T', n, n, n, alph, c, ldc, vsr, ldvsr, bet, e, lde)

!       Find norms of matrices D and E and warn if either is too large
        normd = dlange('O', ldd, n, d, ldd, work)
        norme = dlange('O', lde, n, e, lde, work)
        If (normd>epsilon(1.0E0_dp)**0.8_dp .Or. norme>epsilon(1.0E0_dp)** &
          0.8_dp) Then
          Write (nout, *) 'Norm of A-(Q*S*Z^T) or norm of B-(Q*T*Z^T) &
            &is much greater than 0.'
          Write (nout, *) 'Schur factorization has failed.'
        Else

!         Print solution
          Write (nout, 100) &
            'Number of eigenvalues for which SELCTG is true = ', sdim, &
            '(dimension of deflating subspaces)'

          Write (nout, *)
!         Print generalized eigenvalues
          Write (nout, *) 'Selected generalized eigenvalues'

          Do i = 1, sdim
            If (beta(i)/=0.0_dp) Then
              Write (nout, 120) i, '(', alphar(i)/beta(i), ',', &
                alphai(i)/beta(i), ')'
            Else
              Write (nout, 130) i
            End If
          End Do
          Write (nout, *)

          If (info==(n+2)) Then
            Write (nout, 140) '***Note that rounding errors mean ', &
              'that leading eigenvalues in the generalized', &
              'Schur form no longer satisfy SELCTG = .TRUE.'
            Write (nout, *)
          End If

        End If

      Else
        Write (nout, 110) 'Failure in DGGES. INFO =', info
      End If

100   Format (1X, A, I4, /, 1X, A)
110   Format (1X, A, I4)
120   Format (1X, I4, 5X, A, F7.3, A, F7.3, A)
130   Format (1X, I4, 'Eigenvalue is infinite')
140   Format (1X, 2A, /, 1X, A)
    End Program


ご案内
関連情報
Privacy Policy  /  Trademarks