Program dgesvj_example
! DGESVJ Example Program Text
! Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com
! .. Use Statements ..
Use lapack_example_aux, Only: nagf_file_print_matrix_real_gen
Use lapack_interfaces, Only: ddisna, dgesvj
Use lapack_precision, Only: dp
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..
Real (Kind=dp) :: eps, serrbd
Integer :: i, ifail, info, j, lda, ldv, lwork, m, n
! .. Local Arrays ..
Real (Kind=dp), Allocatable :: a(:, :), rcondu(:), rcondv(:), s(:), &
v(:, :), work(:)
! .. Intrinsic Procedures ..
Intrinsic :: abs, epsilon
! .. Executable Statements ..
Write (nout, *) 'DGESVJ Example Program Results'
Write (nout, *)
Flush (nout)
! Skip heading in data file
Read (nin, *)
Read (nin, *) m, n
lda = m
ldv = n
lwork = n + m
Allocate (a(lda,n), rcondu(m), rcondv(m), s(n), v(ldv,n), work(lwork))
! Read the m by n matrix A from data file
Read (nin, *)((a(i,j),j=1,n), i=1, m)
! Compute the singular values and left and right singular vectors
! of A (A = U*S*V, m.ge.n)
Call dgesvj('G', 'U', 'V', m, n, a, lda, s, 0, v, ldv, work, lwork, &
info)
If (info==0) Then
! Compute the approximate error bound for the computed singular values
! using the 2-norm, s(1) = norm(A), and machine precision, eps.
eps = epsilon(1.0E0_dp)
serrbd = eps*s(1)
! Print solution
Write (nout, *) 'Singular values'
Write (nout, 100)(s(j), j=1, n)
If (abs(work(1)-1.0_dp)>eps) Then
Write (nout, 130) 'Values need scaling by factor = ', work(1)
End If
Flush (nout)
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0
Call nagf_file_print_matrix_real_gen('General', ' ', m, n, a, lda, &
'Left singular vectors', ifail)
Write (nout, *)
Flush (nout)
ifail = 0
Call nagf_file_print_matrix_real_gen('General', ' ', n, n, v, ldv, &
'Right singular vectors', ifail)
! Call DDISNA to estimate reciprocal condition
! numbers for the singular vectors
Call ddisna('Left', m, n, s, rcondu, info)
Call ddisna('Right', m, n, s, rcondv, info)
! Print the approximate error bounds for the singular values
! and vectors
Write (nout, '(/1X,A)') 'Error estimate for the singular values'
Write (nout, 110) serrbd
Write (nout, '(/1X,A)') 'Error estimates for left singular vectors'
Write (nout, 110)(serrbd/rcondu(i), i=1, n)
Write (nout, '(/1X,A)') 'Error estimates for right singular vectors'
Write (nout, 110)(serrbd/rcondv(i), i=1, n)
Else
Write (nout, 120) 'Failure in DGESVJ. INFO =', info
End If
100 Format (3X, (8F8.4))
110 Format (4X, 1P, 6E11.1)
120 Format (1X, A, I4)
130 Format (/, 1X, A, 1P, E13.5)
End Program