概要
本サンプルはFortran言語によりLAPACKルーチンDGEESXを利用するサンプルプログラムです。
行列のSchur分解を行います。
入力データ
(本ルーチンの詳細はDGEESX のマニュアルページを参照)| このデータをダウンロード |
DGEESX Example Program Data 4 :Value of N 0.35 0.45 -0.14 -0.17 0.09 0.07 -0.54 0.35 -0.44 -0.33 -0.03 0.17 0.25 -0.32 -0.13 0.11 :End of matrix A
出力結果
(本ルーチンの詳細はDGEESX のマニュアルページを参照)| この出力例をダウンロード |
DGEESX Example Program Results
Matrix A
1 2 3 4
1 0.3500 0.4500 -0.1400 -0.1700
2 0.0900 0.0700 -0.5400 0.3500
3 -0.4400 -0.3300 -0.0300 0.1700
4 0.2500 -0.3200 -0.1300 0.1100
Number of eigenvalues for which SELECT is true = 1
(dimension of invariant subspace)
Selected eigenvalues
( 0.7995, 0.0000)
ソースコード
(本ルーチンの詳細はDGEESX のマニュアルページを参照)※本サンプルソースコードのご利用手順は「サンプルのコンパイル及び実行方法」をご参照下さい。
| このソースコードをダウンロード |
! DGEESX Example Program Text
! Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com
Module dgeesx_mod
! DGEESX Example Program Module:
! Parameters and User-defined Routines
! .. Use Statements ..
Use lapack_precision, Only: dp
! .. Implicit None Statement ..
Implicit None
! .. Accessibility Statements ..
Private
Public :: select
! .. Parameters ..
Integer, Parameter, Public :: nb = 64, nin = 5, nout = 6
Logical, Parameter, Public :: check_fac = .True., print_cond = .False.
Contains
Function select(wr, wi)
! Logical function select for use with DGEESX (DGEESX)
! Returns the value .TRUE. if the eigenvalue is real and positive
! .. Function Return Value ..
Logical :: select
! .. Scalar Arguments ..
Real (Kind=dp), Intent (In) :: wi, wr
! .. Executable Statements ..
select = (wr>0._dp .And. wi==0._dp)
Return
End Function
End Module
Program dgeesx_example
! DGEESX Example Main Program
! .. Use Statements ..
Use blas_interfaces, Only: dgemm
Use dgeesx_mod, Only: check_fac, nb, nin, nout, print_cond, select
Use lapack_example_aux, Only: nagf_file_print_matrix_real_gen
Use lapack_interfaces, Only: dgeesx, dlange
Use lapack_precision, Only: dp
! .. Implicit None Statement ..
Implicit None
! .. Local Scalars ..
Real (Kind=dp) :: alpha, anorm, beta, eps, norm, rconde, rcondv, tol
Integer :: i, ifail, info, lda, ldc, ldd, ldvs, liwork, lwork, n, sdim
! .. Local Arrays ..
Real (Kind=dp), Allocatable :: a(:, :), c(:, :), d(:, :), vs(:, :), &
wi(:), work(:), wr(:)
Real (Kind=dp) :: dummy(1)
Integer :: idum(1)
Integer, Allocatable :: iwork(:)
Logical, Allocatable :: bwork(:)
! .. Intrinsic Procedures ..
Intrinsic :: epsilon, max, nint
! .. Executable Statements ..
Write (nout, *) 'DGEESX Example Program Results'
Write (nout, *)
Flush (nout)
! Skip heading in data file
Read (nin, *)
Read (nin, *) n
lda = n
ldc = n
ldd = n
ldvs = n
Allocate (a(lda,n), c(ldc,n), d(ldd,n), vs(ldvs,n), wi(n), wr(n), &
bwork(n))
! Use routine workspace query to get optimal workspace.
lwork = -1
liwork = -1
Call dgeesx('Vectors (Schur)', 'Sort', select, &
'Both reciprocal condition numbers', n, a, lda, sdim, wr, wi, vs, &
ldvs, rconde, rcondv, dummy, lwork, idum, liwork, bwork, info)
! Make sure that there is enough workspace for block size nb.
liwork = max((n*n)/4, idum(1))
lwork = max(n*(nb+2+n/2), nint(dummy(1)))
Allocate (work(lwork), iwork(liwork))
! Read in the matrix A
Read (nin, *)(a(i,1:n), i=1, n)
! Copy A into D
d(1:n, 1:n) = a(1:n, 1:n)
! Print matrix A
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0
Call nagf_file_print_matrix_real_gen('General', ' ', n, n, a, lda, &
'Matrix A', ifail)
Write (nout, *)
Flush (nout)
! Find the Frobenius norm of A
anorm = dlange('Frobenius', n, n, a, lda, work)
! Find the Schur factorization of A
Call dgeesx('Vectors (Schur)', 'Sort', select, &
'Both reciprocal condition numbers', n, a, lda, sdim, wr, wi, vs, &
ldvs, rconde, rcondv, work, lwork, iwork, liwork, bwork, info)
If (info/=0 .And. info/=(n+2)) Then
Write (nout, 170) 'Failure in DGEESX. INFO =', info
Go To 100
End If
If (check_fac) Then
! Compute A - Z*T*Z^T from the factorization of A and store in matrix D
alpha = 1.0_dp
beta = 0.0_dp
Call dgemm('N', 'N', n, n, n, alpha, vs, ldvs, a, lda, beta, c, ldc)
alpha = -1.0_dp
beta = 1.0_dp
Call dgemm('N', 'T', n, n, n, alpha, c, ldc, vs, ldvs, beta, d, ldd)
! Find norm of matrix D and print warning if it is too large
norm = dlange('O', ldd, n, d, ldd, work)
If (norm>epsilon(1.0E0_dp)**0.8_dp) Then
Write (nout, *) 'Norm of A-(Z*T*Z^T) is much greater than 0.'
Write (nout, *) 'Schur factorization has failed.'
Go To 100
End If
End If
! Print solution
Write (nout, 110) 'Number of eigenvalues for which SELECT is true = ', &
sdim, '(dimension of invariant subspace)'
Write (nout, *)
! Print eigenvalues.
Write (nout, *) 'Selected eigenvalues'
Write (nout, 120)(' (', wr(i), ',', wi(i), ')', i=1, sdim)
Write (nout, *)
If (info==(n+2)) Then
Write (nout, 130) '***Note that rounding errors mean ', &
'that leading eigenvalues in the Schur form', &
'no longer satisfy SELECT = .TRUE.'
Write (nout, *)
End If
Flush (nout)
If (print_cond) Then
! Print out the reciprocal condition numbers
Write (nout, 140) 'Reciprocal of projection norm onto the invariant', &
'subspace for the selected eigenvalues', 'RCONDE = ', rconde
Write (nout, *)
Write (nout, 150) &
'Reciprocal condition number for the invariant subspace', &
'RCONDV = ', rcondv
! Compute the machine precision
eps = epsilon(1.0E0_dp)
tol = eps*anorm
! Print out the approximate asymptotic error bound on the
! average absolute error of the selected eigenvalues given by
! eps*norm(A)/RCONDE
Write (nout, *)
Write (nout, 160) 'Approximate asymptotic error bound for selected ', &
'eigenvalues = ', tol/rconde
! Print out an approximate asymptotic bound on the maximum
! angular error in the computed invariant subspace given by
! eps*norm(A)/RCONDV
Write (nout, 160) &
'Approximate asymptotic error bound for the invariant ', &
'subspace = ', tol/rcondv
End If
100 Continue
110 Format (1X, A, I4, /, 1X, A)
120 Format (1X, A, F8.4, A, F8.4, A)
130 Format (1X, 2A, /, 1X, A)
140 Format (1X, A, /, 1X, A, /, 1X, A, 1P, E8.1)
150 Format (1X, A, /, 1X, A, 1P, E8.1)
160 Format (1X, 2A, 1P, E8.1)
170 Format (1X, A, I4)
End Program
