実非対称固有値問題: 正方非対称行列 : (固有値と実シュール形)

LAPACKサンプルソースコード : 使用ルーチン名:DGEESX

概要

本サンプルはFortran言語によりLAPACKルーチンDGEESXを利用するサンプルプログラムです。

行列のSchur分解を行います。

\begin{displaymath}
A = \left(
\begin{array}{rrrr}
0.35 & 0.45 & -0.14 & -0.1...
... & 0.17 \\
0.25 & -0.32 & -0.13 & 0.11
\end{array} \right),
\end{displaymath}

$ A$の実固有値がSchur形式 $ T$の左上対角要素となるようにします。選択された固有値群と対応する不変部分空間もあわせて戻されます。

入力データ

(本ルーチンの詳細はDGEESX のマニュアルページを参照)

このデータをダウンロード
DGEESX Example Program Data

  4                         :Value of N

  0.35   0.45  -0.14  -0.17
  0.09   0.07  -0.54   0.35
 -0.44  -0.33  -0.03   0.17
  0.25  -0.32  -0.13   0.11 :End of matrix A

出力結果

(本ルーチンの詳細はDGEESX のマニュアルページを参照)

この出力例をダウンロード
 DGEESX Example Program Results

 Matrix A
          1       2       3       4
 1   0.3500  0.4500 -0.1400 -0.1700
 2   0.0900  0.0700 -0.5400  0.3500
 3  -0.4400 -0.3300 -0.0300  0.1700
 4   0.2500 -0.3200 -0.1300  0.1100

 Number of eigenvalues for which SELECT is true =    1
 (dimension of invariant subspace)

 Selected eigenvalues
  (  0.7995,  0.0000)


ソースコード

(本ルーチンの詳細はDGEESX のマニュアルページを参照)

※本サンプルソースコードのご利用手順は「サンプルのコンパイル及び実行方法」をご参照下さい。


このソースコードをダウンロード
!   DGEESX Example Program Text
!   Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com

    Module dgeesx_mod

!     DGEESX Example Program Module:
!            Parameters and User-defined Routines

!     .. Use Statements ..
      Use lapack_precision, Only: dp
!     .. Implicit None Statement ..
      Implicit None
!     .. Accessibility Statements ..
      Private
      Public :: select
!     .. Parameters ..
      Integer, Parameter, Public :: nb = 64, nin = 5, nout = 6
      Logical, Parameter, Public :: check_fac = .True., print_cond = .False.
    Contains
      Function select(wr, wi)

!       Logical function select for use with DGEESX (DGEESX)
!       Returns the value .TRUE. if the eigenvalue is real and positive

!       .. Function Return Value ..
        Logical :: select
!       .. Scalar Arguments ..
        Real (Kind=dp), Intent (In) :: wi, wr
!       .. Executable Statements ..
        select = (wr>0._dp .And. wi==0._dp)
        Return
      End Function
    End Module
    Program dgeesx_example

!     DGEESX Example Main Program

!     .. Use Statements ..
      Use blas_interfaces, Only: dgemm
      Use dgeesx_mod, Only: check_fac, nb, nin, nout, print_cond, select
      Use lapack_example_aux, Only: nagf_file_print_matrix_real_gen
      Use lapack_interfaces, Only: dgeesx, dlange
      Use lapack_precision, Only: dp
!     .. Implicit None Statement ..
      Implicit None
!     .. Local Scalars ..
      Real (Kind=dp) :: alpha, anorm, beta, eps, norm, rconde, rcondv, tol
      Integer :: i, ifail, info, lda, ldc, ldd, ldvs, liwork, lwork, n, sdim
!     .. Local Arrays ..
      Real (Kind=dp), Allocatable :: a(:, :), c(:, :), d(:, :), vs(:, :), &
        wi(:), work(:), wr(:)
      Real (Kind=dp) :: dummy(1)
      Integer :: idum(1)
      Integer, Allocatable :: iwork(:)
      Logical, Allocatable :: bwork(:)
!     .. Intrinsic Procedures ..
      Intrinsic :: epsilon, max, nint
!     .. Executable Statements ..
      Write (nout, *) 'DGEESX Example Program Results'
      Write (nout, *)
      Flush (nout)
!     Skip heading in data file
      Read (nin, *)
      Read (nin, *) n
      lda = n
      ldc = n
      ldd = n
      ldvs = n
      Allocate (a(lda,n), c(ldc,n), d(ldd,n), vs(ldvs,n), wi(n), wr(n), &
        bwork(n))

!     Use routine workspace query to get optimal workspace.
      lwork = -1
      liwork = -1
      Call dgeesx('Vectors (Schur)', 'Sort', select, &
        'Both reciprocal condition numbers', n, a, lda, sdim, wr, wi, vs, &
        ldvs, rconde, rcondv, dummy, lwork, idum, liwork, bwork, info)

!     Make sure that there is enough workspace for block size nb.
      liwork = max((n*n)/4, idum(1))
      lwork = max(n*(nb+2+n/2), nint(dummy(1)))
      Allocate (work(lwork), iwork(liwork))

!     Read in the matrix A
      Read (nin, *)(a(i,1:n), i=1, n)

!     Copy A into D
      d(1:n, 1:n) = a(1:n, 1:n)

!     Print matrix A
!     ifail: behaviour on error exit
!            =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
      ifail = 0
      Call nagf_file_print_matrix_real_gen('General', ' ', n, n, a, lda, &
        'Matrix A', ifail)

      Write (nout, *)
      Flush (nout)

!     Find the Frobenius norm of A
      anorm = dlange('Frobenius', n, n, a, lda, work)

!     Find the Schur factorization of A
      Call dgeesx('Vectors (Schur)', 'Sort', select, &
        'Both reciprocal condition numbers', n, a, lda, sdim, wr, wi, vs, &
        ldvs, rconde, rcondv, work, lwork, iwork, liwork, bwork, info)

      If (info/=0 .And. info/=(n+2)) Then
        Write (nout, 170) 'Failure in DGEESX. INFO =', info
        Go To 100
      End If

      If (check_fac) Then
!       Compute A - Z*T*Z^T from the factorization of A and store in matrix D
        alpha = 1.0_dp
        beta = 0.0_dp
        Call dgemm('N', 'N', n, n, n, alpha, vs, ldvs, a, lda, beta, c, ldc)
        alpha = -1.0_dp
        beta = 1.0_dp
        Call dgemm('N', 'T', n, n, n, alpha, c, ldc, vs, ldvs, beta, d, ldd)

!       Find norm of matrix D and print warning if it is too large
        norm = dlange('O', ldd, n, d, ldd, work)
        If (norm>epsilon(1.0E0_dp)**0.8_dp) Then
          Write (nout, *) 'Norm of A-(Z*T*Z^T) is much greater than 0.'
          Write (nout, *) 'Schur factorization has failed.'
          Go To 100
        End If
      End If

!     Print solution
      Write (nout, 110) 'Number of eigenvalues for which SELECT is true = ', &
        sdim, '(dimension of invariant subspace)'

      Write (nout, *)
!     Print eigenvalues.
      Write (nout, *) 'Selected eigenvalues'
      Write (nout, 120)(' (', wr(i), ',', wi(i), ')', i=1, sdim)
      Write (nout, *)

      If (info==(n+2)) Then
        Write (nout, 130) '***Note that rounding errors mean ', &
          'that leading eigenvalues in the Schur form', &
          'no longer satisfy SELECT = .TRUE.'
        Write (nout, *)
      End If
      Flush (nout)

      If (print_cond) Then
!       Print out the reciprocal condition numbers
        Write (nout, 140) 'Reciprocal of projection norm onto the invariant', &
          'subspace for the selected eigenvalues', 'RCONDE = ', rconde
        Write (nout, *)
        Write (nout, 150) &
          'Reciprocal condition number for the invariant subspace', &
          'RCONDV = ', rcondv

!       Compute the machine precision
        eps = epsilon(1.0E0_dp)
        tol = eps*anorm

!       Print out the approximate asymptotic error bound on the
!       average absolute error of the selected eigenvalues given by
!       eps*norm(A)/RCONDE
        Write (nout, *)
        Write (nout, 160) 'Approximate asymptotic error bound for selected ', &
          'eigenvalues   = ', tol/rconde

!       Print out an approximate asymptotic bound on the maximum
!       angular error in the computed invariant subspace given by
!       eps*norm(A)/RCONDV
        Write (nout, 160) &
          'Approximate asymptotic error bound for the invariant ', &
          'subspace = ', tol/rcondv
      End If
100   Continue

110   Format (1X, A, I4, /, 1X, A)
120   Format (1X, A, F8.4, A, F8.4, A)
130   Format (1X, 2A, /, 1X, A)
140   Format (1X, A, /, 1X, A, /, 1X, A, 1P, E8.1)
150   Format (1X, A, /, 1X, A, 1P, E8.1)
160   Format (1X, 2A, 1P, E8.1)
170   Format (1X, A, I4)
    End Program


ご案内
関連情報
Privacy Policy  /  Trademarks