Nearest Neighbours: nagdmc_knnc

Purpose

nagdmc_knnc computes k-nearest neighbour classifications given a binary tree computed by *nagdmc_kdtree* using training data.

Declaration

```c
#include <nagdmc.h>
void nagdmc_knnc(long rec1, long nvar, long nrec, long dblk, double data[],
                  long iproot, double prior[], double rho, long uc, int norm,
                  long k, long res[], long nn[], double dist[], int *info);
```

Parameters

1: \texttt{rec1} – long \hspace{1cm} Input
 \textit{On entry:} the index in the data of the first data record used in the analysis.
 \textit{Constraint:} \texttt{rec1} \geq 0.

2: \texttt{nvar} – long \hspace{1cm} Input
 \textit{On entry:} the number of variables in the data.
 \textit{Constraint:} \texttt{nvar} > 1.

3: \texttt{nrec} – long \hspace{1cm} Input
 \textit{On entry:} the number of consecutive records, beginning at \texttt{rec1}, used in the analysis.
 \textit{Constraint:} \texttt{nrec} > 1.

4: \texttt{dblk} – long \hspace{1cm} Input
 \textit{On entry:} the total number of records in the data block.
 \textit{Constraint:} \texttt{dblk} \geq \texttt{rec1} + \texttt{nrec}.

5: \texttt{data[dblk*nvar]} – double \hspace{1cm} Input
 \textit{On entry:} the data values for the jth variable (for $j = 0, 1, \ldots, \texttt{nvar} - 1$) are stored in \texttt{data[i*nvar+j]}, for $i = 0, 1, \ldots, \texttt{dblk} - 1$.

6: \texttt{iproot} – long \hspace{1cm} Input
 \textit{On entry:} the integer value of the root node of a binary tree as returned by *nagdmc_kdtree*.

7: \texttt{prior[c]} – double \hspace{1cm} Input
 \textit{On entry:} if \texttt{prior} is set to 0, uniform priors are used; otherwise \texttt{prior[i]} gives the prior probability for the ith of c categories on the dependent variable in the analysis, for $i = 0, 1, \ldots, c - 1$.
 \textit{Constraints:} if \texttt{prior} is not 0, \texttt{prior[i]} \geq 0, for $i = 0, 1, \ldots, c - 1$, and the elements in \texttt{prior} must sum equal to one.

8: \texttt{rho} – double \hspace{1cm} Input
 \textit{On entry:} the value of maximum probability of group membership that must be exceeded for classification. Each data record with a maximum probability of group membership less than or equal to \texttt{rho} is classified as \texttt{uc}.
 \textit{Constraint:} 0 \leq \texttt{rho} < 1.

9: \texttt{uc} – double \hspace{1cm} Input
 \textit{On entry:} the value that should be assigned to data records if the value of \texttt{rho} is not exceeded.

10: \texttt{norm} – int \hspace{1cm} Input
 \textit{On entry:} the norm used to compute distances. If \texttt{norm} = 1, the ℓ_1-norm (or Manhattan distance) is used; otherwise \texttt{norm} = 2 and the ℓ_2-norm (or Euclidean distance) is used.
 \textit{Constraint:} \texttt{norm} $\in \{1, 2\}$.
11: \(k \) — long
\(\text{Input} \)
On entry: the number of nearest neighbours used in the computation.
Constraint: \(0 < k < \text{nrec} \).

12: \(\text{res}[\text{nrec}] \) — long
\(\text{Output} \)
On exit: \(\text{res}[i] \) contains the \(k \)-nearest neighbour classification of the \(i \)th data record, for \(i = 0, 1, \ldots, \text{nrec} - 1 \).

13: \(\text{nn}[\text{nrec} \times k] \) — long
\(\text{Output} \)
On exit: if \(\text{nn} \) is set to 0, it is not referenced; otherwise \(\text{nn}[i \times k + j] \) contains the index in the training data for the \(j \)th nearest neighbour to the \(i \)th data record, for \(j = 0, 1, \ldots, k - 1 \); for \(i = 0, 1, \ldots, \text{nrec} - 1 \).

14: \(\text{dist}[\text{nrec} \times k] \) — double
\(\text{Output} \)
On exit: if \(\text{dist} \) is set to 0, it is not referenced; otherwise \(\text{dist}[i \times k + j] \) contains the distance from the \(i \)th data record to its \(j \)th nearest neighbour, for \(j = 0, 1, \ldots, k - 1 \); for \(i = 0, 1, \ldots, \text{nrec} - 1 \).

15: \(\text{info} \) — int *
\(\text{Output} \)
On exit: \(\text{info} \) gives information on the success of the function call:
0: the function successfully completed its task.
1; \(i = i \); \(i = 1 \); \(i = 2 \); \(i = 3 \); \(i = 4 \); \(i = 7 \); \(i = 8 \); \(i = 10 \); \(i = 11 \): the specification of the \(i \)th formal parameter was incorrect.
57: information in the binary tree has been corrupted.
99: the function failed to allocate enough memory.
100: an internal error occurred during the execution of the function.

Notation
\(\text{nrec} \) the number of data records to classify, \(n \).
\(\text{data} \) the data values, \(X \).
\(\text{prior} \) the prior probabilities \(p_l \), for \(l = 1, 2, \ldots, c \).
\(\rho \) the threshold for accepting classifications, \(\rho \).
\(\text{uc} \) the dummy value representing unclassified data records, \(z \).
\(k \) the number of nearest neighbours used in the calculations, \(k \).
\(\text{res} \) the nearest neighbour classifications \(\hat{y}_i \), for \(i = 1, 2, \ldots, n \).

Description
Let \(X \) be a set of \(n \) data records \(x_i \), for \(i = 1, 2, \ldots, n \), on \(p \) independent variables and a categorical dependent variable \(y \). The \(j \)th value of the \(i \)th data record is denoted by \(x_{ij} \). Each member of \(X \) is to be classified into one of \(c \) categories where the prior probability of the \(l \)th category is \(p_l \), for \(l = 1, 2, \ldots, c \).

The \(k \)-nearest neighbour approach searches a set of training data records \(T \) (i.e., data records with known categories for \(y \)) to find the \(k \)-nearest data records to \(x_i \). Nearest neighbours are found by using a binary tree search, e.g., see Bentley (1975). The proximity of \(x_i \) to a member \(t \) of \(T \) is defined by a distance calculated over the independent variables and can be defined by using one of:

(a) the \(\ell_1 \)-norm or Manhattan distance:
\[
\sum_{j=1}^{p} |x_{ij} - t_j|,
\]
where \(| \cdot | \) denotes the modulus operator;
(b) the \(\ell_2 \)-norm or Euclidean distance:
\[
\left(\sum_{j=1}^{p} (x_{ij} - t_j)^2 \right)^{1/2}.
\]
Let \(S_i \) be a set containing the \(k \)-nearest neighbours in \(T \) to \(x_i \), and \(h_{il} \) be the number of members of \(S_i \) belonging to the \(l \)th category. The posterior probability \(\theta_{il} \) of \(x_i \) belonging to the \(l \)th category is given by,

\[
\theta_{il} = \frac{p_l h_{il}}{\sum_{m=1}^{c} p_m h_{im}}.
\]

Let \(q \) denote the index of the maximum value in \(\theta_{il} \), for \(l = 1, 2, \ldots, c \). Given a user-supplied value for \(\rho \), \(x_i \) is classified by setting the \(i \)th value of the dependent variable, \(\hat{y}_i \), to category value \(q \) if \(\theta_{iq} > \rho \); otherwise \(x_i \) is unclassified and \(\hat{y}_i \) is assigned a dummy value, say \(z \).

References and Further Reading

Bentley J L (1975) Multi-dimensional binary search trees used for associative searching Communications of the ACM 18(9) 509–517.

See Also

- nagdmc_kdtree computes a binary tree for a nearest neighbour analysis.
- nagdmc_free_kdtree frees the memory containing a binary tree.
- nagdmc_load_kdtree loads a binary tree from a file into memory.
- nagdmc_save_kdtree writes a binary tree to file.
- knnc_ex.c the example calling program.